1) vector control nozzle
矢量控制喷管
2) control system for AVEN
矢量喷管控制系统
3) nozzle vetor controller
矢量喷口控制器
4) vectoring thrust nozzle
矢量喷管
1.
Secondary-divergent vectoring thrust nozzle based on secondary fluidic injection was designed and the performance of vectoring thrust nozzle was studied by using computer simulation method.
应用数值模拟的方法对二次扩张型射流矢量喷管进行设计并研究了其推力矢量性能,探讨了二次扩张段注入射流产生推力矢量的机理,分析了二次扩张角度以及次主流压力比(SPR,Secondary to Primary total pressure Ratio)的变化对喷管主喷流偏转特性的影响。
2.
A random process model of structural functional function of components attached to vectoring thrust nozzle was employed,in which strength and stress of components were respectively taken as random variable and stochastic process.
本文将矢量喷管构件的强度考虑为随机变量,将构件的应力考虑为随机过程,建立了构件结构功能函数的随机过程模型。
5) thrust vectoring nozzle
矢量喷管
1.
Three typical stages,two sway stage and one backhaul stage,were defined according to the kinetic characteristic of thrust vectoring nozzle.
针对矢量喷管机构的运动特点,将其运动过程分为2个摆动阶段和1个定位阶段,应用概率论和随机过程理论建立了对应这3个阶段的运动功能可靠性分析模型;采用有限元软件ANSYS和机构仿真分析软件ADAMS相结合的办法,得到机构目标变量的分布;根据建立的3个阶段的可靠度数学模型,计算了矢量喷管机构的可靠度。
2.
The mathematical model of turbofan engine transient process with thrust vectoring nozzle was established.
建立带矢量喷管的涡扇发动机动态数学模型。
6) vectoring nozzles
矢量喷管
1.
Two dimensional internal flow field of thrust vectoring nozzles was calculated at two fluidic thrust vectoring concepts of shock vector control and fluidic throat skewing.
在激波诱导和喉道倾斜 2种流体控制方案下 ,对推力矢量喷管的二维内流场进行了数值模拟 。
补充资料:交流电动机矢量控制
交流电动机矢量控制
transvector control of AC motor
制的问题;能承受冲击性负载等。交流电动机的矢量控制已得到了广泛的应用.尤其是感应电动机的调速。如机床所用的伺服电动机,需要有微米级高精度定位控制,要求定位控制的角速度有100 rad/s以上的响应速度,电动机容量一般为几千瓦;轧钢设备中的主轧机驱动系统,性能上要求能快速反转,大范围调速,大的过载能力和冲击负载等。以上这些场合都可应用矢量控制方法满足高性能的调速要求,其中有些场合以前一直采用直流电动机调速,现在已逐渐由感应电动机的矢量控制调速所代替。同步电动机的矢量控制调速,如应用于压延机主压辊的电动机调速等,可获得比感应电动机高的功率因数。墓本原理调速的关键是控制转矩。直流电动机的电枢电流和励磁电流可看成是正交的或解藕的矢量,可方便地分别调节电枢电流和励磁电流,从而进行转矩、转速的控制.感应电动机中没有独立可控的励磁电流,但其定子三相交流电流所产生的定子合成磁通势矢量,与转子电流所产生的磁通矢量是以同步速度旋转的.如果从同步速度旋转的坐标系来看,转子磁通矢量可以认为是由转子直流矢量所产生,定子磁通势矢量为定子直流矢量所产生。可进一步将定子直流矢量分解成两个分量:一个分量与转子直流或转子磁通同方向(称励磁电流分量),另一个分量与其垂直(称转矩电流分童),即两分量也互相垂直,成为正交或解辆的矢量,与直流电动机两独立电流的性质一样。如图1(a)所示,俪,为励磁电流分量,行、为转矩电流分量, 图1磁场定向坐标与其他坐标的关系 (a)感应电动机磁场定向坐标;(b)同步电动机 滋场定向坐标11为定子电流。这种以转子磁通蚕:为定向方向的坐标,称为磁场定向坐标,定子电流相对磁场定向坐标为直流电流。如果分别调节两个电流分量,交流电动机的转矩和转速控制,就与直流电动机相似了。为了先将三相交流量(测量值)变换成两个互相垂直的直流量进行反馈控制,再将所需的控制量反变换为三相系统量去控制电动机,就必须应用矢量变换的方法,这种控制称为矢量变换控制。这种矢量变换通常是将静止的三相系统(定子ABC系统)首先变换为静止的两相坐标系(称邓坐标系)中的量,再将静止两相坐标系中的量变换为同步速度旋转的互相垂直的坐标系(称MT坐标系)中进行反馈控制,然后再将控制量进行反变换为三相系统进行控制。其各坐标系之间的关系如图1(a)所不。 同步电动机的矢量变换控制原理与感应电动机相似,不同的是选择气隙合成磁通矢量必.作为磁场定向坐标系M轴的方向。其磁场定向坐标与其他坐标的关系如图1(b)所示。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条