1) maximal dilatation
极大伸缩商
2) maxi mal dilatation
最大伸缩商
1.
Asρ→∞,we prove that the maxi mal dilatation K≤ρ+o(ρ),and the coefficient 1 can not be improved.
构造了一种新的拟共形扩张,当ρ→∞,证明它的最大伸缩商K≤ρ+o(ρ),其中系数1不能进一步改进。
3) dilatation
[英][,dɪlə'teɪʃən, ,daɪlə-] [美][,dɪlə'teʃən, ,daɪlə-]
伸缩商
1.
Let h be a homeomorphism of R onto itself with h(±∞)= ±∞,when the quasisymmetric function ρ(x,t)of h is controled by a decreasing function ρ(t),the dilatation D(z)obtained by the Beurling-Ahlfors extension of h is further estimated as follow: 21 1D ≤ ρ ? + ρ?? 2,where ρ ? = ρ(2y).
当h(x)的拟对称函数(,)()()()()x th x t h xρ=h x+?h?x?t(x∈R,t>0)被递减函数ρ(t)所控制时,h(x)的Beurling-Ahlfors扩张的伸缩商D(z)具有下述估计:21 1D≤ρ?+ρ??2,其中()2ρ?=ρy。
2.
The main result is following: Suppose thatf(z) ,withf(0 ) =0 ,is a quasi- conformal mapping in|z|<1,and there exist such constantsβ >0 ,M≥ 0 ,that lim z→∞ |f (z) | |z|β =α,∫1 0 β - 1 D(r) 1 rdr≤ M, where D(z) is the dilatation off and D(z) =1 2π∫2π 0 D(r exp(iθ) ) dθ, then,the image region off contains the disk|w|<(α/ 4) e- M .
主要结果如下 :设 f(z)是 |z|≤ 1上的拟共形映照 ,f(0 ) =0 ,且存在常数β >0 ,M≥ 0 ,使limz→∞|f (z) ||z|β =α,∫10β - 1D(r)drr ≤ M,其中 D(r)是 f (z)的伸缩商 ,D(r) =12π∫2π0 D(r exp(iθ) ) dθ,则 f的像区域必包含圆盘 |w|<(α/ 4) e- M。
4) Angular dilatation
角伸缩商
5) Boundary dilatation
边界伸缩商
1.
The boundary dilatation for an extremal problem;
一个极值问题的边界伸缩商
2.
In this paper,we proved an equation on the boundary dilatation and infinites- imally boundary dilatation of quasiconformal mappings:h([μ])=inf_(μ1∈[μ])b([μ1]B)and gave a corollary on the space T_0.
本文给出了拟共形映照边界伸缩商与无限小边界伸缩商的一个等式h([μ])=inf_(μ1∈[μ])b([μ1]B);并给出了一个关于T_0空间的推论。
6) local dilatation quotient
局部伸缩商
补充资料:保险商实验室安全标准(见保险商实验室)
保险商实验室安全标准(见保险商实验室)
safety standards of UL: see Underwriters Laboratories; UL
Baoxianshang Sh啊nshi anquan bicozhun保险商实验室安全标准(saJ七ty stand助dsofUL)见保险商实脸室。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条