1) differential equation groups of variable linear constant index
变系数线性微分方程组
3) variable coefficient nonlinear ordinary differential equation
变系数非线性微分方程
1.
In this paper, a method of fuzzy logical system is used so that we can transfer the fuzzy inference rule into a type of variable coefficient nonlinear ordinary differential equation.
由于其复杂性和无规律性,混沌系统的数学模型一直难于建立,利用模糊逻辑系统的插值机理将关于被控对象的模糊推理规则库转换为一类变系数非线性微分方程,从而得到连续混沌系统的数学模型,提出了控制系统中混沌被控对象的建模问题的一种方案。
5) variable coefficients linear differential equation
变系数线性微分方程
1.
This paper provides a general solution to the n-order variable coefficients linear differential equation by turning it into constants coefficients linear differential equation through variable transformation.
文章将高阶变系数线性常微分方程利用变量变换化为常系数线性常微分方程 ,进而得出高阶变系数线性微分方程的通解。
6) linear partial differential equation with variable coefficients
变系数线性偏微分方程
补充资料:殆周期系数的线性微分方程组
殆周期系数的线性微分方程组
titial equations with almost-periodic coefficients linear system of differ-
殆周期系数的线性微分方程组〔】如犯ar阿s。,llof山fl沁r-即血l冈调d昵雨山汕眼‘t一伴ri团icc此fficients;服-“e益“a”e“eTeMa八“中中ePe“”“a几‘n以即皿“e“u面eno叱T“。eP“o八“,ee以M“即,中巾“双“e”TaM“} 常微分方程组 又=A(t).、+f(t).x‘R”.门)其中A(·):R一Hom(R”R”),f(·):R~R“为殆周期映射(见殆周期函数(a】n10st一详百(对ic仙Ic-tion)).按坐标写出,则有形式 又’一,冬a;(‘)x’+f‘(r),,一,,…,n,其中叫(t)和了‘(t)(i .J=1,,·,。)为殆周期实值函数.这种方程组的出现与B曲r殆周期函数(Bohr川n1Ost,peri《xli。且川Ctio、)有关(见{1」).对一类范围较狭的方程组(其中A(t)和f(t)为拟周期映射,见拟周期函数(q珑巧i一periodic function))更早就有兴趣,这同沿着天体力学方程的条件周期解去考虑变分方程有关. 如果齐次方程组 交=A(t)x(2)是积分分离的(见积分分离条件(加eg飞11 seperat10ncondi石on)),则它可通过(关于t的、殆周期瓜ny-HOB变换(Lyapunov transformation)x=L(r)夕化成殆周期系数的对角方程组乡=B(t)厂即对于它所化成的方程组,存在R”的一个与t无关的基,这个基由对每个任R,算子B(t)的本征向量组成.在关于这个基的坐标下,方程组夕=B(t)y可写成对角形式: 乡‘二酬(t)y’,i=1,’“,”· 在殆周期系数方程组(2)的空间中赋予度量 d(通,,通2)=sup!I火,(t)一且2(t)11, t‘R具有积分分离的方程组的集合是开集.下述定理成立:设A(r)=C+:D(r),这里C任Hom(R”R”),C的本征值都为不同实数,月.D(·)为殆周期映射R~Hom(R”,R”),则存在叮>0,使得对所有满足}:}<泞的:,方程组(2)可通过(关于t的)殆周期丑只rly日oB变换化为具有殆周期系数的对角方程组. 对于殆周期映射A(r):R一Hom(R”,R”),下述四个论断等价:1)对每个殆周期映射f〔·):R一R”,存在方程组(l)的殆周期解;2)存在方程组(2)解的指数二分性(dichotomy);3)方程组又=万(t)x,其中万(t)=腼*一,。A(t*+t),没有非零有界解;4)对于每个有界映射f(t):R”一,R”,方程组(l)具有有界解..,.一人儿吊似万万桂气D疏r贪币al叫ua石on,o记让1-ary)及其参考文献.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条