说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> NP难题
1)  NP-hard
NP难题
1.
The problem of seeking monitor-nodes for measuring the network traffic is regarded as the problem of finding out the minimum weak vertex cover of a graph which is NP-hard.
网络流量监测点问题可以抽象为图的最小弱顶点覆盖问题,而求解最小弱顶点覆盖问题是一个NP难题
2)  NP-hard problem
NP-难问题
3)  NP-hard
NP-难问题
4)  NP hard problem
NP-难问题
1.
The authors we lodged a method of reducing the solving difficulty the creative method of nonequivalence single restrict, aim at a kind of combination and optimize problem multi dimension 0 1 knapsack problem(also called the NP hard problem).
针对一类组合优化问题—多维 0 - 1背包问题 ( MKP) ,这是一个 NP-难问题 ,提出一种能减少求解难度的方法—约束化简方法。
5)  NP hard problem
NP难问题
1.
To be solved this NP hard problem and based on the advantage of simulated annealing and genetic algorithm,the hybrid genetic algorithm are fused and analysed.
为解决此NP难问题,融合模拟退火和遗传算法二者优势,进行了混合遗传算法的分析和仿真运算。
2.
The algorithm complexity analysis shows that,to a certain extent,the algorithm could resolve the NP hard problems of attributive value reduction.
通过算法复杂度分析说明,该算法在一定程度上解决了属性值约简的NP难问题。
6)  NP-hard problem
NP难问题
1.
In complexity theory,set packing problems is an important NP-hard problem,which is used widely in the fields of scheduling and code optimization.
在复杂性理论中,此问题是一类重要的NP难问题,被广泛应用于调度、代码优化和生物信息学等领域。
2.
The computational complexity problem of K-T point in quadratic programming is transformed into linear complementarity s computational complexity problem,and combining with knapsack problem,we obtained that quadratic programming is an NP-hard problem.
将二次规划中K-T点复杂性问题转化为线性互补复杂性问题,并结合背包问题得出二次规划是NP难问题。
3.
Task scheduling is a NP-hard problem and is an integral part of parallel and distributed computing.
任务调度是提高多处理机系统效率的一个关键问题,许多任务调度问题已被证明是NP难问题。
补充资料:21世纪七大数学难题

何谓“七大世纪数学难题”。以下是这七个难题的简单介绍。

“难题”之一:p(多项式算法)问题对np(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(stephencook)于1971年陈述的。

“难题”之二: 霍奇(hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“难题”之三: 庞加莱(poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

“难题”之四: 黎曼(riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“难题”之五: 杨-米尔斯(yang-mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条