1) radar/ultra-wideband ground-penetrating radar (UW-GPR)
雷达/超宽带探地雷达
3) broadband GPR
宽带探地雷达
1.
The broadband GPR system study and its application in engineer inspecting;
宽带探地雷达系统研究及在工程检测的应用
4) UWB radar
超宽带雷达
1.
A method for improving UWB radar target recognition probability;
一种提高超宽带雷达目标识别概率的方法
2.
However,the relevant theory used in the narrow-band radar can not be applied directly in the ultra-wide-band(UWB) radar so a new theoretical system for UWB radar needs to be established.
关于信杂比及杂波谱的研究对于杂波背景下目标的检测具有重要的指导意义,然而窄带雷达已有的相关理论在超宽带雷达中已经不再适用,需重新进行研究。
3.
Then, feature extraction and classified distinguishing are achieved for UWB radar returns, and besides, this algorithm is simulated via computer.
在理论上对波形匹配算法进行了详细地推导,对超宽带雷达目标回波进行了特征提取和分类判决,并在计算机上完成了数值仿真。
5) ultra-wideband radar
超宽带雷达
1.
Applications of photoconductive semiconductor switches in ultra-wideband radars;
光导开关在超宽带雷达中的应用
2.
Jamming the carrier-free ultra-wideband radar with comb spectrum signals
无载频超宽带雷达的梳状谱干扰技术
3.
This letter analyzed the principle of the anti-stealth-aircraft using THz ultra-wideband radar.
文中分析了THz超宽带雷达反隐身的原理,基于半绝缘GaAs的PCSS's获得THz脉冲的方法以及对THz脉冲的发射、接收及信号处理等问题。
6) ultra wideband radar
超宽带雷达
1.
Application of pulse compression in ultra wideband radar system;
脉冲压缩在超宽带雷达中的应用
补充资料:航海雷达
装在船上用于航行避让、船舶定位、狭水道引航的雷达,亦称船用雷达。航海雷达在能见度不良时为航海人员提供了必需的观察手段。它的出现是航海技术发展的重大里程碑。
发展简况 1904年德国工程师胡尔斯迈耶制成能发射和接收电磁波以探测船舶的装置,但因作用距离不到1英里,未引起重视。1935年法国班轮"诺曼底"号最先安装航海雷达,其天线不能旋转,用以探测前方冰山。30年代末,英国和美国制成船用米波对空搜索雷达。第二次世界大战期间,研制了厘米波对海雷达。1940年英国人兰德尔和布特制成空腔磁控管,解决了微波源问题。1941年美国首先制成带有平面位置显示器的脉冲微波海面搜索雷达。这种雷达在第二次世界大战的反潜艇作战中发挥了重大作用,战后用作商船航海雷达,以保证航海安全。60年代末到70年代初出现了自动雷达标绘仪,进一步发挥了雷达在避碰上的作用,得到广泛应用。《1972年国际海上避碰规则》规定了正确使用雷达和进行标绘的要求。《1974年国际海上人命安全公约1981年修正案》规定了不同吨位船舶安装雷达和自动雷达标绘仪的台数和日期。国际海事组织也先后通过航海雷达和自动雷达标绘仪的性能标准。
结构 通常由天线、发射机、接收机、显示器和电源5部分组成。①天线:早期用抛物面反射天线,现已为波导隙缝天线取代。天线辐射以水平线性极化为主;为提高雷达在雨雪中的探测能力,有的天线装有圆极化装置。发射和接收一般合用一个天线,由双工器(收发开关)转换。天线由马达驱动,作360°连续环扫。为保证方位测量精度和方位分辨力,天线波束水平宽度要窄,很多3厘米航海雷达在1°以内。为防止船舶摇摆时丢失目标,波束垂直宽度较宽,约为25°。②发射机:采用脉冲体制。脉冲宽度约为 0.05~2微秒。近距离档用较短脉冲,以提高距离分辨力;远距离档用较长脉冲,以增大作用距离。工作波段以X波段(9320~9500兆赫)和S波段(3000~3246兆赫)为主,这两种波段的雷达通常分别称为 3厘米雷达和10厘米雷达。在天线尺寸相同的情况下,前者有较高的方位分辨力,有利于近距离探测;后者受雨雪杂波和海浪杂波的干扰较小,电磁波经过雨区的衰减也小,如果发射功率相同,远距离灵敏度较高,有利于远距离探测。雷达同时安装这两种波段,可取长补短。③接收机:采用直接混频超外差式,设有海浪干扰抑制电路和雨雪干扰抑制电路。为防止相同波段的雷达干扰,有的雷达设有抗同频异步干扰电路。发射机和接收机组装在同一机柜内,合称收发机。④显示器:采用距离方位极坐标的平面位置显示,扫描线和天线同步旋转,有若干档距离量程可供选用。测距可用活动距标或固定距标;测方位可用电子方位线或机械方位圈。70年代出现的高亮度显示器,可不用遮光罩,白天在驾驶台正常光线下供数人同时观察。有的采用彩色显示器,用不同颜色表示不同内容,使屏幕画面更醒目。⑤电源:早期用变流机,现已普遍采用逆变器,也有直接用船电的。
航海雷达和其他电子设备一样也经历了电子管、晶体管和集成电路三个元件阶段。目前的固态航海雷达,除发射机的磁控管和显示器的阴极射线管外,全部采用固态元件,提高了整机工作的稳定性和可靠性。作为船用电子设备,为适应海上工作条件,在结构、电路和工艺上须考虑振动、摇摆、冲击、电源、电压和频率波动、温度、湿度、盐污、霉菌等各种因素的影响,舱外露天部分(如天线)还要考虑水密性和抗风强度。
性能 主要包括作用距离和分辨力。
作用距离 雷达探测物标的距离为
其中c为电磁波传播速度;Δt为脉冲往返时间。限制航海雷达作用距离的因素包括:①雷达地平距离。在正常天气下,雷达波传播所受大气折射影响稍大于光,所以雷达最大作用距离 D(以海里计)也稍远于物标的地理能见距离。
式中h和H分别为天线和物标的高度,以米计。②物标反射雷达波的能力。雷达对某物标的最大作用距离等于它的发现距离,即在荧光屏上刚能从噪声背景中检出该物标回波的距离。3厘米雷达天线高度为15米时,对不同物标在正常天气下的发现距离可参考下表:
③天气条件。在降水天和雾天,雷达波部分能量被水分吸收,物标发现距离可缩短15%~20%。当冷空气移到暖水面出现欠折射时,雷达波的传播途径翘离地面,雷达作用距离可缩短30%~40%。当暖空气移到冷水面出现过折射时,雷达波的传播途径弯向地面,使雷达作用距离增大;而当形成大气波导传播时,雷达作用距离大大增加,如在阿拉伯海的干燥季节,曾探测到距离1500海里的物标。
雷达最小作用距离主要与脉冲宽度和波束垂直宽度有关。在脉冲发射期间,雷达不能接收回波;在波束下沿外的物标,雷达波不能射及。二者中范围大者即为最小作用距离。
分辨力 有距离分辨力和方位分辨力。雷达的距离分辨力优于方位分辨力。①距离分辨力:主要取决于脉冲宽度。当同方位两物标的间距小于或等于时(τ为脉冲宽度),两物标回波就连在一起,无法分辨。距离分辨力还与回波光点的直径有关,所以实际距离分辨力为(0.8~0.9)cτ,如脉冲宽度为0.01微秒,距离分辨力约为25米。②方位分辨力:主要取决于波束水平宽度。当同距离两物标的方位差小于波束水平宽度时,两回波就连在一起。所以方位分辨力等于波束水平宽度和光点直径之和,其实际间隔则视距离远近而定。如波束水平宽度为1°,8海里处两物标要相隔260米左右,回波才能分开。
应用 航海雷达用于测定船位、引航和避让。
定位 雷达测距比测向精度高。按照定位精度顺序,雷达定位方法为:距离定位、孤立目标的距离方位定位和方位定位。如用雷达测距和目测方位结合,定位精度更高。雷达测量距离和方位的准确性受多种因素影响。按照国际海事组织1981年提出的性能标准,要求测距误差不超过所用量程的1.5%或70米,取其大者。物标在显示屏边沿的测方位误差应在±1°以内。
由于雷达本身性能和物标反射特性的影响,雷达图象具有以下特点,需要正确辩认。①失真,由于波束水平宽度和光点直径的影响,物标回波往往比实物为大;观测物标回波边沿的方位时,需修正半个波束水平宽度。由于雷达地平以远和受遮挡的地物无回波,所得岸线图形往往与海图上形状不完全一致。②有干扰,包括雨雪杂波、海浪杂波、同频杂波等的干扰,轻者影响观察,重者掩没物标回波。③可能出现假回波,包括旁辨回波、间接回波、多次反射等。④其他如由于船上烟囱、桅杆的遮挡,荧光屏上形成扇形阴影,超折射时出现第二行程回波等。
引航 在较宽水道航行,最好利用雷达连续在海图上定位进行导航。在狭水道航行,须直接在显示器上进行导航。航海雷达有相对运动显示和真运动显示两种方式。
相对运动显示方式为航海雷达的基本显示方式。其特点是代表本船船位的扫描起始点在荧光屏上(一般在荧光屏中心)固定不动,所有物标的运动都表现为对本船的相对运动。相对运动显示方式分两种。①舷角显示方式:又称"船首向上"显示方式。不管本船航向如何改变,船首标志线始终指向固定方位刻度盘的正上方(零度),便于读取舷角。但物标在屏幕上的位置随本船航向改变而改变,因此在改向或船首由于风浪而发生偏荡时,会使图像不稳,且由于余辉而使图像模糊(图1)。②方位显示方式:又称"真北向上"显示方式。将本船陀螺罗经(见罗经)的航向信息输入显示器,使船首标志线随本船航向而改变,其所指固定方位刻度盘读数就是当时本船航向,此时固定方位刻度盘正上方(零度)代表真北,本船改向时,物标在屏幕上的位置不变,保持图像稳定(图2)。船舶主要依靠浮标航行,而且航道弯度不大,可选用舷角显示方式;船舶航行转向频繁,而且需要大角度转向时,选用方位显示方式为宜。
真运动显示方式为在荧光屏上能反映船舶运动真实情况的显示方式。实现真运动显示,要将本船罗经的航向和计程仪的速度信息输入显示器。其特点是代表本船船位的扫描起始点以相应于本船的航向和速度在屏幕上移动,海面上的固定物标在屏幕上则固定不动,活动物标按其航向和航速在屏幕上作相应移动,根据活动物标的余辉,即能看出其真实航向和估计其速度(图3)。真运动显示方式主要是便于驾驶员迅速估计周围形势。
避让标绘 为了判别与会遇船有无碰撞危险,应根据雷达观测信息进行标绘作业,标绘内容通常是求最近会遇距离和来船的真航向,真航速。
人工标绘作业可在极坐标图上进行:按一定时间间隔把来船回波的相对位置移标在图上,其联线就是该船的相对运动线。它离中心的垂直距离,称为最近会遇距离。最近会遇距离太近就是有碰撞危险。已知本船真航向、真航速,通过作矢量三角形,就能求出会遇船真航向、真航速。60年代出现了套在雷达显示器屏幕上的反射作图器,它使驾驶员能直接在屏幕上标绘而无视差,从而提高了标绘效率,但准确性有所降低,也不能留下记录。以后又出现了在屏幕上增加一些被称为"火柴杆"的电子标志和基于光、磁、机械等方法进行标绘的其他装置。60年代末到70年代初出现自动雷达标绘仪。
自动雷达标绘仪是附属于航海雷达的自动标绘装置,一般用电子计算机控制,可与雷达组装在一起,也可以作为单独部件。工作时,需向它输入本船航向、速度、雷达触发脉冲、雷达天线角位置和雷达视频回波信号,由人工或自动录取会遇船,然后自动跟踪。通常用矢量线在屏幕上表示各会遇船的航向和航速,其长短可以设定。矢量线末端代表到设定的时间时各会遇船的位置,可以很容易看出有无碰撞危险(图4)。也有用椭圆形或六角形显示预测危险区,其大小取决于所设定的最近会遇距离。如会遇船的航向、航速和本船的航速均不变,本船航向线通过预测危险区时,即有碰撞危险(图5)。当电子计算机算出最近会遇距离和到最近会遇点时间小于所设定的允许范围时,会自动地以各种方式(视觉和音响)报警,提醒驾驶员采取避让措施。如果需要,可进行模拟避让(模拟改向、改速或倒车),以确定所要采取的避让措施。为准确显示各种避碰信息,如选定船舶的方位、距离、航向、航速,最近会遇距离和到最近会遇点时间等,标绘仪中还有数字显示器或字符显示器。(见彩图)
参考书目
F.J.Wylie, The Use of Radar at Sea,5th ed., Hollis & Carter Ltd,London,1978.
发展简况 1904年德国工程师胡尔斯迈耶制成能发射和接收电磁波以探测船舶的装置,但因作用距离不到1英里,未引起重视。1935年法国班轮"诺曼底"号最先安装航海雷达,其天线不能旋转,用以探测前方冰山。30年代末,英国和美国制成船用米波对空搜索雷达。第二次世界大战期间,研制了厘米波对海雷达。1940年英国人兰德尔和布特制成空腔磁控管,解决了微波源问题。1941年美国首先制成带有平面位置显示器的脉冲微波海面搜索雷达。这种雷达在第二次世界大战的反潜艇作战中发挥了重大作用,战后用作商船航海雷达,以保证航海安全。60年代末到70年代初出现了自动雷达标绘仪,进一步发挥了雷达在避碰上的作用,得到广泛应用。《1972年国际海上避碰规则》规定了正确使用雷达和进行标绘的要求。《1974年国际海上人命安全公约1981年修正案》规定了不同吨位船舶安装雷达和自动雷达标绘仪的台数和日期。国际海事组织也先后通过航海雷达和自动雷达标绘仪的性能标准。
结构 通常由天线、发射机、接收机、显示器和电源5部分组成。①天线:早期用抛物面反射天线,现已为波导隙缝天线取代。天线辐射以水平线性极化为主;为提高雷达在雨雪中的探测能力,有的天线装有圆极化装置。发射和接收一般合用一个天线,由双工器(收发开关)转换。天线由马达驱动,作360°连续环扫。为保证方位测量精度和方位分辨力,天线波束水平宽度要窄,很多3厘米航海雷达在1°以内。为防止船舶摇摆时丢失目标,波束垂直宽度较宽,约为25°。②发射机:采用脉冲体制。脉冲宽度约为 0.05~2微秒。近距离档用较短脉冲,以提高距离分辨力;远距离档用较长脉冲,以增大作用距离。工作波段以X波段(9320~9500兆赫)和S波段(3000~3246兆赫)为主,这两种波段的雷达通常分别称为 3厘米雷达和10厘米雷达。在天线尺寸相同的情况下,前者有较高的方位分辨力,有利于近距离探测;后者受雨雪杂波和海浪杂波的干扰较小,电磁波经过雨区的衰减也小,如果发射功率相同,远距离灵敏度较高,有利于远距离探测。雷达同时安装这两种波段,可取长补短。③接收机:采用直接混频超外差式,设有海浪干扰抑制电路和雨雪干扰抑制电路。为防止相同波段的雷达干扰,有的雷达设有抗同频异步干扰电路。发射机和接收机组装在同一机柜内,合称收发机。④显示器:采用距离方位极坐标的平面位置显示,扫描线和天线同步旋转,有若干档距离量程可供选用。测距可用活动距标或固定距标;测方位可用电子方位线或机械方位圈。70年代出现的高亮度显示器,可不用遮光罩,白天在驾驶台正常光线下供数人同时观察。有的采用彩色显示器,用不同颜色表示不同内容,使屏幕画面更醒目。⑤电源:早期用变流机,现已普遍采用逆变器,也有直接用船电的。
航海雷达和其他电子设备一样也经历了电子管、晶体管和集成电路三个元件阶段。目前的固态航海雷达,除发射机的磁控管和显示器的阴极射线管外,全部采用固态元件,提高了整机工作的稳定性和可靠性。作为船用电子设备,为适应海上工作条件,在结构、电路和工艺上须考虑振动、摇摆、冲击、电源、电压和频率波动、温度、湿度、盐污、霉菌等各种因素的影响,舱外露天部分(如天线)还要考虑水密性和抗风强度。
性能 主要包括作用距离和分辨力。
作用距离 雷达探测物标的距离为
其中c为电磁波传播速度;Δt为脉冲往返时间。限制航海雷达作用距离的因素包括:①雷达地平距离。在正常天气下,雷达波传播所受大气折射影响稍大于光,所以雷达最大作用距离 D(以海里计)也稍远于物标的地理能见距离。
式中h和H分别为天线和物标的高度,以米计。②物标反射雷达波的能力。雷达对某物标的最大作用距离等于它的发现距离,即在荧光屏上刚能从噪声背景中检出该物标回波的距离。3厘米雷达天线高度为15米时,对不同物标在正常天气下的发现距离可参考下表:
③天气条件。在降水天和雾天,雷达波部分能量被水分吸收,物标发现距离可缩短15%~20%。当冷空气移到暖水面出现欠折射时,雷达波的传播途径翘离地面,雷达作用距离可缩短30%~40%。当暖空气移到冷水面出现过折射时,雷达波的传播途径弯向地面,使雷达作用距离增大;而当形成大气波导传播时,雷达作用距离大大增加,如在阿拉伯海的干燥季节,曾探测到距离1500海里的物标。
雷达最小作用距离主要与脉冲宽度和波束垂直宽度有关。在脉冲发射期间,雷达不能接收回波;在波束下沿外的物标,雷达波不能射及。二者中范围大者即为最小作用距离。
分辨力 有距离分辨力和方位分辨力。雷达的距离分辨力优于方位分辨力。①距离分辨力:主要取决于脉冲宽度。当同方位两物标的间距小于或等于时(τ为脉冲宽度),两物标回波就连在一起,无法分辨。距离分辨力还与回波光点的直径有关,所以实际距离分辨力为(0.8~0.9)cτ,如脉冲宽度为0.01微秒,距离分辨力约为25米。②方位分辨力:主要取决于波束水平宽度。当同距离两物标的方位差小于波束水平宽度时,两回波就连在一起。所以方位分辨力等于波束水平宽度和光点直径之和,其实际间隔则视距离远近而定。如波束水平宽度为1°,8海里处两物标要相隔260米左右,回波才能分开。
应用 航海雷达用于测定船位、引航和避让。
定位 雷达测距比测向精度高。按照定位精度顺序,雷达定位方法为:距离定位、孤立目标的距离方位定位和方位定位。如用雷达测距和目测方位结合,定位精度更高。雷达测量距离和方位的准确性受多种因素影响。按照国际海事组织1981年提出的性能标准,要求测距误差不超过所用量程的1.5%或70米,取其大者。物标在显示屏边沿的测方位误差应在±1°以内。
由于雷达本身性能和物标反射特性的影响,雷达图象具有以下特点,需要正确辩认。①失真,由于波束水平宽度和光点直径的影响,物标回波往往比实物为大;观测物标回波边沿的方位时,需修正半个波束水平宽度。由于雷达地平以远和受遮挡的地物无回波,所得岸线图形往往与海图上形状不完全一致。②有干扰,包括雨雪杂波、海浪杂波、同频杂波等的干扰,轻者影响观察,重者掩没物标回波。③可能出现假回波,包括旁辨回波、间接回波、多次反射等。④其他如由于船上烟囱、桅杆的遮挡,荧光屏上形成扇形阴影,超折射时出现第二行程回波等。
引航 在较宽水道航行,最好利用雷达连续在海图上定位进行导航。在狭水道航行,须直接在显示器上进行导航。航海雷达有相对运动显示和真运动显示两种方式。
相对运动显示方式为航海雷达的基本显示方式。其特点是代表本船船位的扫描起始点在荧光屏上(一般在荧光屏中心)固定不动,所有物标的运动都表现为对本船的相对运动。相对运动显示方式分两种。①舷角显示方式:又称"船首向上"显示方式。不管本船航向如何改变,船首标志线始终指向固定方位刻度盘的正上方(零度),便于读取舷角。但物标在屏幕上的位置随本船航向改变而改变,因此在改向或船首由于风浪而发生偏荡时,会使图像不稳,且由于余辉而使图像模糊(图1)。②方位显示方式:又称"真北向上"显示方式。将本船陀螺罗经(见罗经)的航向信息输入显示器,使船首标志线随本船航向而改变,其所指固定方位刻度盘读数就是当时本船航向,此时固定方位刻度盘正上方(零度)代表真北,本船改向时,物标在屏幕上的位置不变,保持图像稳定(图2)。船舶主要依靠浮标航行,而且航道弯度不大,可选用舷角显示方式;船舶航行转向频繁,而且需要大角度转向时,选用方位显示方式为宜。
真运动显示方式为在荧光屏上能反映船舶运动真实情况的显示方式。实现真运动显示,要将本船罗经的航向和计程仪的速度信息输入显示器。其特点是代表本船船位的扫描起始点以相应于本船的航向和速度在屏幕上移动,海面上的固定物标在屏幕上则固定不动,活动物标按其航向和航速在屏幕上作相应移动,根据活动物标的余辉,即能看出其真实航向和估计其速度(图3)。真运动显示方式主要是便于驾驶员迅速估计周围形势。
避让标绘 为了判别与会遇船有无碰撞危险,应根据雷达观测信息进行标绘作业,标绘内容通常是求最近会遇距离和来船的真航向,真航速。
人工标绘作业可在极坐标图上进行:按一定时间间隔把来船回波的相对位置移标在图上,其联线就是该船的相对运动线。它离中心的垂直距离,称为最近会遇距离。最近会遇距离太近就是有碰撞危险。已知本船真航向、真航速,通过作矢量三角形,就能求出会遇船真航向、真航速。60年代出现了套在雷达显示器屏幕上的反射作图器,它使驾驶员能直接在屏幕上标绘而无视差,从而提高了标绘效率,但准确性有所降低,也不能留下记录。以后又出现了在屏幕上增加一些被称为"火柴杆"的电子标志和基于光、磁、机械等方法进行标绘的其他装置。60年代末到70年代初出现自动雷达标绘仪。
自动雷达标绘仪是附属于航海雷达的自动标绘装置,一般用电子计算机控制,可与雷达组装在一起,也可以作为单独部件。工作时,需向它输入本船航向、速度、雷达触发脉冲、雷达天线角位置和雷达视频回波信号,由人工或自动录取会遇船,然后自动跟踪。通常用矢量线在屏幕上表示各会遇船的航向和航速,其长短可以设定。矢量线末端代表到设定的时间时各会遇船的位置,可以很容易看出有无碰撞危险(图4)。也有用椭圆形或六角形显示预测危险区,其大小取决于所设定的最近会遇距离。如会遇船的航向、航速和本船的航速均不变,本船航向线通过预测危险区时,即有碰撞危险(图5)。当电子计算机算出最近会遇距离和到最近会遇点时间小于所设定的允许范围时,会自动地以各种方式(视觉和音响)报警,提醒驾驶员采取避让措施。如果需要,可进行模拟避让(模拟改向、改速或倒车),以确定所要采取的避让措施。为准确显示各种避碰信息,如选定船舶的方位、距离、航向、航速,最近会遇距离和到最近会遇点时间等,标绘仪中还有数字显示器或字符显示器。(见彩图)
参考书目
F.J.Wylie, The Use of Radar at Sea,5th ed., Hollis & Carter Ltd,London,1978.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条