1) big prime
大素数
1.
Fast Generating of Big Prime in SoC System;
SoC系统中大素数快速生成
2.
The security of RSA is threatened if the big prime isn t properly chosen,and the performance of RSA is affected by the speed of prime generating,so the research on the speed of prime generating is valuable.
如果大素数选取不当,那么RSA的安全性也就存在着严重的威胁,而且素数生成的速度也影响着RSA算法的性能,因此研究素数的生成速度具有一定的实际意义。
2) big prime number
大素数
1.
The RSA encryption algorithm security is based on two extremely big prime numbers products;Is unable with the present computer level to decompose this premise,produces two to satisfy the length request the big prime number is guarantees the RSA encryption the data security reliable premise.
RSA加密算法的安全性是基于两个非常大的质数的乘积;用目前的计算机水平无法分解这一前提的,生成两个满足长度要求的大素数是保证RSA加密的数据安全可靠的前提。
2.
This paper introduces the encryption and decryption of RSA system in public key and concludes that the key of the system security is the generation of big prime number.
在详细介绍公要密码中RSA系统的加密、解密的基础上,分析了该系统安全的关键是大素数的生成。
3.
According to the congruence theory,a fast division was proposed to judge whether a great integer can be divided exactly by the small prime numbers in order to enhance the production speed of big prime numbers in RSA algorithm.
根据同余理论提出一种快速试除法来更快地判断一个大整数是否能被小素数整除,从而进一步提高RSA算法中所需要的大素数的生成速度。
4) the largest prime number
最大素数
5) large prime fields
大素数域
1.
The software implementation of the elliptic curve cryptosystem over large prime fields;
大素数域上椭圆曲线密码体制的软件实现
2.
This paper discusses the elliptic curve cryptography and its advantages from the requirements of application system security and efficiency, designs an identity authentication system based on elliptic curve over large prime fields Fp, and analyzes the security final-ly.
本文从应用系统的安全性和高效性的要求出发,阐述了椭圆曲线密码体制的基本原理及其优点,设计了一个基于大素数域Fp椭圆曲线的身份认证系统,并对该系统进行了安全性分析。
6) big prime number finding
大素数寻找
补充资料:Euclid素数定理
Euclid素数定理
Euclidean prime mnber theorem
add素数定理降汕业此叨帅说.即b叮均曰,曰n;E。二-J助a reopeMa 0 upoe:。x,。e几axl 素数的集合是无限的(EucM的《几何原本》(E】。比七nts),卷狱,命题20).qe6曰山e。定理(关于素数的)( Cheb够hev thooren‘(onp~nUmbe比))和素数分布(distribution ofp~n切旧bers)的渐近律给出关于自然数序列中素数集合的更确切的信息. C.M.Bopo”附撰【补注】Euclid素数定理的证明是很简单的.假设只存在有限个素数乃,…,几.考虑数N=Pl…八+1.因为N>1,且已假设素数是有限的,所以N必定可被某个素数,譬如说只整除;即几可以整除N=pl…n…几刊,因此召可以整除1.这个矛盾证明,必须存在无限多个素数.张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条