2) chiral vector
手性矢量
3) property vector
属性矢量
1.
It suggests a novel distance algorithm to get the distance of every pair of the property based on similar information of the basic property vectors.
该方法将属性矢量化,属性作为m维空间的基本矢量,数据记录作为属性矢量的和。
4) implicit vector
隐性矢量
1.
Naming this property the “x degree," the authors of this paper suggest that the “x" here be understood as denoting an implicit vector specified by a magnitude and a direction, and go on to argue that whether the direction in question is convergent or divergent would distinguish the marked from the unmarked in this case.
本文作者认为这类概念是不但具有绝对大小而且具有方向性的隐性矢量,并且在相对的一对概念中具有发散性方向的往往为无标记项。
5) polar vector
极性矢量
6) vector quantitative product
矢量数性积
1.
Through analysing and solving living examples,the author of this paper expounds the widespread application of vector quantitative product in solving process.
矢量数性积是矢量代数中的一种运算 ,它沟通了矢量与代数间的转换关系 ,同时它也有效地解决了几何度量和角度问题。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条