1) lithium ferric manganese phosphate
磷酸铁锰锂
2) lithium iron/manganese phosphate
磷酸铁/锰锂
3) LiFePO4
磷酸铁锂
1.
Well-crystallized and regular lithium iron phosphate(LiFePO4) particles were synthesized via solvothermal reaction in H2O-isopropanol mixture solvents.
采用溶剂热法在H2O和异丙醇的混合溶剂中合成橄榄石结构的磷酸铁锂(LiFePO4)。
2.
The research progress of preparation,modification in LiFePO4 is briefly described.
介绍了磷酸铁锂的结构和电化学性能,重点阐述了具有橄榄石结构的磷酸铁锂正极材料改性的研究进展。
3.
Polypyrrole(PPy)/lithium iron phosphate(LiFePO4) composite was prepared in the in-situ polymerization method.
通过原位聚合方法制备了聚吡咯(PPy)/磷酸铁锂(LiFePO4)复合材料。
4) LiFePO_4
磷酸铁锂
1.
Doping, Alloying and Carbon-Coating of LiFePO_4 Cathode Materials;
磷酸铁锂正极材料的掺杂、合金化和碳包覆优化
2.
Olivine-structured LiFePO_4 is considered as a promising cathode material for lithium-ion batteries, due to its advantages such as environmentally friendliness, abundant raw materials, inexpensive price and high safety.
磷酸铁锂的电导率低,高倍率充放电性能较差是限制其商业化的瓶颈。
3.
As a cathode material in the new generation of lithium-ion batteries, lithium ironphosphate(LiFePO_4) has attracted significant attention because of its high safety,environmental benignity, stable cycle performance and low cost.
磷酸铁锂(LiFePO_4)作为新一代锂离子电池正极材料,以其高安全性、环境友好、循环性能稳定和价格低廉等优点引起了广泛的关注,但是它存在电导率低和锂离子扩散缓慢的问题,导致材料在大电流充放电时产生可逆容量损失。
5) lithium iron phosphate
磷酸铁锂
1.
Influence of carbon doping method on the electrochemical performances of lithium iron phosphate;
碳掺杂方式对磷酸铁锂电化学性能的影响
2.
Research progress in the enhancing property of lithium iron phosphate;
磷酸铁锂正极材料改性研究进展
3.
Research status of lithium iron phosphate as lithium-ion battery cathode material
锂离子电池正极材料磷酸铁锂研究现状
6) lithium iron phosphate
磷酸锂铁
1.
As a potential cathode material for Li-ion batteries, olivine-type lithium iron phosphate has recently been paid close attention.
分析了橄榄石型磷酸锂铁 (LiFePO4)的晶体结构 ,评述了近年来各种制备LiFePO4的方法 ,包括固相反应法、水热合成法、液相共沉淀法以及其他多种方法。
补充资料:高锰酸锂
分子式:LiMnO4·3H2O
CAS号:
性质:长形暗紫色针状结晶,六角晶系。密度2.06g/cm3(25℃)。熔点104~107℃并开始分解。易溶于水。由高锰酸钾与高氯酸锂混合反应制得;或由高锰酸钡与硫酸锂反应制得。可用作氧化剂。
CAS号:
性质:长形暗紫色针状结晶,六角晶系。密度2.06g/cm3(25℃)。熔点104~107℃并开始分解。易溶于水。由高锰酸钾与高氯酸锂混合反应制得;或由高锰酸钡与硫酸锂反应制得。可用作氧化剂。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条