1) Threshold Regressive Model
门限回归模型
1.
The forecast for the monthly mean runoff of Ertan Hydropower Station is made with both the Threshold Regressive Model and the Artificial Neural Network Model respectively,from which the calculations show that the problems from the prediction of monthly mean runoff can be successfully solved by the models with less errors.
分别利用门限回归模型(TR模型)和人工神经网络模型对二滩水电站的月平均径流量序列进行了预测。
2) threshold auto-regressive model
门限自回归模型
1.
Application of genetic threshold auto-regressive model to water stage forecasting for tidal river section;
遗传门限自回归模型在感潮河段水位预测中的应用
2.
An optimizing method of threshold auto-regressive model parameters in partial orthogonal design;
门限自回归模型参数的局部正交设计寻优法
3.
A Meiyu predication experiment using the threshold auto-regressive model,advanced genetic algorithm,and related techniques was carried out in Taizhou.
针对梅雨量的分布特性,提出应用门限自回归模型建立一套简便实用的梅雨量丰枯预测方案。
3) Threshold AutoRegressive model
门限自回归模型
1.
Application of threshold autoregressive model based geneticalgorithm for forecasting marine temperature;
基于遗传算法的门限自回归模型在海温预测中的应用
2.
The Use of Threshold Autoregressive Models in Stock Markets;
门限自回归模型在股票量价比中的应用
3.
Threshold autoregressive models are widely used in time series applications.
门限自回归模型被广泛地用于许多领域。
4) threshold auto regressive model
门限自回归模型
1.
threshold auto regressive model has been introduced firstly into daily flow stochastic simulation in this paper.
为了客观描述日流量变化的非线性特性 ,将一种非线性时序模型——门限自回归模型引入日流量随机模拟。
2.
A simple and universal scheme is suggested to deduce the threshold auto regressive model.
提出了建立门限自回归模型的一种简便通用的方法,用遗传算法可同时优化门限值和自回归系数。
5) blend threshold autoregression
混合门限自回归模型
1.
Applying the time series blend threshold autoregression model,the immediate discharge nonliner predicing model Tarso[2,(1,1),(1,1)] is established.
应用时间序列混合门限自回归模型建立了涌水量预测模型Tarso[2,(1,1),(1,1)],利用此模型对1991 年的涌水量进行了预测,误差率在10% ~20% 之间,满足生产需要。
6) subset threshold autoregressive model
子集门限自回归模型
补充资料:多元线性回归模型
分子式:
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条