1) triaxial shear strength
三轴抗剪强度
1.
The test results indicate that the stress-strain curves behave in the same form under different confining pressures and different strain rates at the same temperature of frozen soil; the triaxial shear strength has a linear relati.
试验结果表明:在温度相同时,不同围压、不同应变速率下的应力-应变曲线具有相同的形态,其三轴抗剪强度与围压及温度有明显的线性关系,与应变速率成指数关系;变形模量与围压没有明显的相关关系,但与温度成线性关系,与应变速率成指数关系。
2) triaxial undrained shear strength
三轴不排水抗剪强度
3) uniaxial tension test
抗剪强度单轴抗拉强度
4) 3D shear strength
三维抗剪强度
5) triaxial tensile strength
三轴抗拉强度
6) triaxial compressive strength
三轴抗压强度
补充资料:土的抗剪强度
土体抵抗剪切破坏的能力。土可以由于拉力过大而开裂,也可以由于剪力过大而破坏。土体中各点的抗剪强度或所承受的剪应力都可以是不均匀的。因此,土体的剪切破坏可能是整体破坏,也可能是局部破坏。工程上有许多情况(如地基承载力、土坡稳定以及挡土墙的土压力等)主要考虑剪切问题。而在粘性土坡稳定性的分析中则要考虑三个问题:计算方法、抗剪强度 τ和安全系数的确定,三者是互相关联和协调的。
净洁砂的抗剪强度 砂的抗剪强度是由颗粒间摩擦角的抵抗力产生的,可由直接剪力仪测定。将结果绘成σ-τf曲线(图1),并用下式表达:
τf=σtg嗘
(1)
式中τf为抗剪强度;σ为剪切破坏面上的法向压力;嗘为砂的内摩擦角,其值主要随砂的密度、颗粒的粗糙度和粒径级配的均匀性而变,可从疏松粉砂的28°到密实粗砂的41°。对于中小型工程,嗘值可查有关书籍中的试验结果,根据具体情况选用,可不另进行试验。
砂的抗剪强度比较严密的表达式:
τf=σ′tg嗘′ 或 τf=(σ-u)tg嗘′
(2)
式中 σ和σ′分别为剪切面上的总应力和有效正应力;u为孔隙压力;嗘′为有效内摩擦角。对于透水性较大的砂,用有效应力表达的嗘′ 角稍大于但又接近于总应力的嗘角。
产生孔隙压力的来源可能有:①外加荷载;②渗透浮托力或砂层中有承压水;③外界的振动,如爆破、地震或机械振动。以浮托力为例,当砂体中某一点的 u等于σ时,抗剪强度τf等于零,工程上称为流砂状态。
饱和粘性土的抗剪强度 粘性土的抗剪强度也可用直接剪力仪测定,但它存在着比较严重的缺点:①不能严格控制排水条件;②不能量测孔隙水压力;③试件的破坏面限定在上下匣之间的平面,而不是顺着试件最薄弱的面破坏;④试件中应力和应变分布不均匀。为此,现多用三轴压力仪测定。
影响粘性土的抗剪强度的因素很多,其中以排水条件最为重要。按排水条件试验可分为三种:①不排水剪切;②固结不排水剪切;③固结排水剪切。后一种试验得出的试验结果与第二种差别不大,而要使剪切时的孔隙压力完全消散,必须剪切得很缓慢,这样就需要很长的时间。因此,在实用上一般不做固结排水剪切试验。
非饱和粘性土的抗剪强度 实用上大多采用总应力法以表述其抗剪强度。
坚硬或裂隙粘性土的抗剪强度 这类土多数属于高度超压密土,用特制仪器(如环剪仪或往复剪力仪)试验得出的应力-应变曲线(图2a),在峰值之后经继续剪切变形的强度为残余强度。对应于峰值和残余强度的破坏包线分别为AB和CD(图2b),CD线的c′(多数情况之下c′接近于零)和嗘′值远小于AB线的c′、嗘′值。实用上采用残余强度分析坚硬或裂隙粘性土坡的稳定性,并认为比较接近实际。
原位测定土抗剪强度 在现场直接测定土层不同深度的抗剪强度。其优点是可避免取土、运输和室内试验对土样的扰动及应力释放。原位测定的方法主要有:十字板、旁压仪和静力触探等试验(见土工试验和现场原型观测),通常都是用以测定饱和粘性土层的不排水抗剪强度。
净洁砂的抗剪强度 砂的抗剪强度是由颗粒间摩擦角的抵抗力产生的,可由直接剪力仪测定。将结果绘成σ-τf曲线(图1),并用下式表达:
τf=σtg嗘
(1)
式中τf为抗剪强度;σ为剪切破坏面上的法向压力;嗘为砂的内摩擦角,其值主要随砂的密度、颗粒的粗糙度和粒径级配的均匀性而变,可从疏松粉砂的28°到密实粗砂的41°。对于中小型工程,嗘值可查有关书籍中的试验结果,根据具体情况选用,可不另进行试验。
砂的抗剪强度比较严密的表达式:
τf=σ′tg嗘′ 或 τf=(σ-u)tg嗘′
(2)
式中 σ和σ′分别为剪切面上的总应力和有效正应力;u为孔隙压力;嗘′为有效内摩擦角。对于透水性较大的砂,用有效应力表达的嗘′ 角稍大于但又接近于总应力的嗘角。
产生孔隙压力的来源可能有:①外加荷载;②渗透浮托力或砂层中有承压水;③外界的振动,如爆破、地震或机械振动。以浮托力为例,当砂体中某一点的 u等于σ时,抗剪强度τf等于零,工程上称为流砂状态。
饱和粘性土的抗剪强度 粘性土的抗剪强度也可用直接剪力仪测定,但它存在着比较严重的缺点:①不能严格控制排水条件;②不能量测孔隙水压力;③试件的破坏面限定在上下匣之间的平面,而不是顺着试件最薄弱的面破坏;④试件中应力和应变分布不均匀。为此,现多用三轴压力仪测定。
影响粘性土的抗剪强度的因素很多,其中以排水条件最为重要。按排水条件试验可分为三种:①不排水剪切;②固结不排水剪切;③固结排水剪切。后一种试验得出的试验结果与第二种差别不大,而要使剪切时的孔隙压力完全消散,必须剪切得很缓慢,这样就需要很长的时间。因此,在实用上一般不做固结排水剪切试验。
非饱和粘性土的抗剪强度 实用上大多采用总应力法以表述其抗剪强度。
坚硬或裂隙粘性土的抗剪强度 这类土多数属于高度超压密土,用特制仪器(如环剪仪或往复剪力仪)试验得出的应力-应变曲线(图2a),在峰值之后经继续剪切变形的强度为残余强度。对应于峰值和残余强度的破坏包线分别为AB和CD(图2b),CD线的c′(多数情况之下c′接近于零)和嗘′值远小于AB线的c′、嗘′值。实用上采用残余强度分析坚硬或裂隙粘性土坡的稳定性,并认为比较接近实际。
原位测定土抗剪强度 在现场直接测定土层不同深度的抗剪强度。其优点是可避免取土、运输和室内试验对土样的扰动及应力释放。原位测定的方法主要有:十字板、旁压仪和静力触探等试验(见土工试验和现场原型观测),通常都是用以测定饱和粘性土层的不排水抗剪强度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条