1) fountain theorem
喷泉定理
1.
Moreover, by using the Fountain theorem of Bartsch, the existence of infinitely many solut ons with large energy for the equations are obtained.
在较弱的条件下,证明方程所对应的泛函满足Cerami条件,进而应用Bartsch 的喷泉定理,得到了方程无穷多个大能量解的存在性。
2.
Under the assumption that the linear part is not equivalent to 0,the existence of infinitely many nontrivial periodic solutions for the systems is proved with the variant fountain theorem in critical point theory,where F(t,u) satisfies a new super-quadratic condition and need not satisfy the global Ambrosetti-Rabinowitz c.
在线性项非零的假设下,当位势函数F满足新的超二次条件而不满足Ambrosetti-Rabi-nowitz条件时,运用临界点理论中喷泉定理证明此系统存在无穷多非平凡的周期解。
2) Dual fountain theorem
对偶喷泉定理
1.
With the aids of Dual fountain theorem,it can be obtained that this problem has many solutions with negative energy as λ∈(0,λ*),and the norm of the solutions behave near 0 asymptotically as λ→0+;for λ≤0,there is no solution with negative energy.
证明了具有Hardy-Sobolev临界指数的半线性椭圆方程(1)的解的情况,存在λ*>0,当λ∈(0,λ*)时,运用对偶喷泉定理得方程有无穷多解,且该解序列具有负的能量值;当λ→0+时,解的模趋于零;当λ≤0时,方程没有负能量的解。
2.
If f satisfies nonquadraticity condition,using variational methods,via dual fountain theorem,proved that there exists there exists λ*>0 such that for any λ∈(0,λ*),this problem has a sequence of solutions{uk}H10(Ω)such that I(uk)<0 and I(uk)→0 as k→+∞.
在f满足非二次条件的情况下,运用对偶喷泉定理证明了存在λ*>0,使得,当λ∈(0,λ*)时,该方程有无穷多个弱解{uk}满足I(uk)<0,并且I(uk)→0,k→+∞。
3.
Via the dual fountain theorem,when the parameter λ is small enough,1
通过对偶喷泉定理,证明了当参数λ很小且,1
3) generalized fountain theorem
广义喷泉定理
4) fountain
[英]['faʊntən] [美]['fauntṇ]
喷泉
1.
Study on Air Negative Ions Produced by Fountain and Its Effecting Factors;
喷泉产生的空气负离子及其影响因素的研究
2.
Application of PLC Controller And Freguency Converter In Fountain;
可编程控制器和变频器在喷泉中的应用
3.
Three-dimension fountain effect of implementation based on Direct3D and particle system;
基于Direct3D与粒子系统实现喷泉效果
5) fountain
[英]['faʊntən] [美]['fauntṇ]
n.泉水,喷泉,源泉
6) fountain
[英]['faʊntən] [美]['fauntṇ]
喷泉,喷水池,泉源
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条