1) mountain pass theorem
山路定理
1.
Under these conditions, we get the following existence theorem by applying weighted Sobolev embedding([1]) and Mountain Pass Theorem([17]):Theorem A Let 1<p<N.
在上述条件下,应用带权Sobolev嵌入定理([1])及山路定理([17]),便可得下面的存在性定理。
2.
By Ekeland\'s variational principle and a variant version of Mountain Pass Theorem,we prove that there exist at least two nontrivial solutions ifλis small.
应用Ekeland变分原理和山路定理,我们证明当λ充分小时,方程至少有两个非平凡解。
2) systemtric mountain pass Theorem
对称山路定理
3) mountain pass lemma
山路引理
1.
Mountain Pass Lemma Without the P S Condition;
没有PS条件的山路引理(英文)
2.
A generalized Mountain Pass Lemma
一个广义形式的山路引理
4) the Mountain Pass Lemma
山路引理
1.
In this paper,using the Mountain Pass Lemma and some analysis techniques,the authors proved the existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Sobolev-Hardy critical exponents under weak conditions.
用山路引理和一些分析技巧证明了一类具有Hardy项和Sobolev-Hardy临界指数的半线性椭圆方程的非线性项在弱的条件下解的存在性和多重性。
2.
By using the improved Hardy inequality and the strong maximum principle,combining the sub-supersolution method and the mountain pass lemma,we obtain the existence results of multiple positive solutions under certain conditions.
讨论一类具Hardy位势的奇异拟线性椭圆方程,应用改进型Hardy不等式和强极大值原理,并结合上下解方法与山路引理证明了方程在适当条件下多重正解的存在性。
5) mountain-pass lemma
山路引理
1.
By using of the mountain-pass lemma and a dual approach,they obtain a nontrival solution of a quasilinear Schrdinger equation-Δu-Δ(|u|2)u+V(x)u=h(u),u∈ H1(RN).
应用山路引理及对偶的方法求一类拟线性Schrdinger方程-Δu-Δ(|u|2)u+V(x)u=h(u),u∈H1(RN)的一个非平凡解。
2.
Existence theorem of a pair of non-trivial solutions for a class of semilinear elliptic equations was given by ways of the orthogonal decomposition of the Sobolev space and of the Mountain-pass lemma of Ambrosetti and Rabinowitz.
利用空间H01(Ω)的正交分解性,结合Ambrosetti与Rabinowitz的山路引理,证得一类椭圆方程非平凡解的存在性。
6) Mountain Pass Theorem
山路引理
1.
Application of the Mountain Pass Theorem to Asymptotically Linear Elliptic Equations;
山路引理在一类渐近线性椭圆方程中的应用
2.
As the right term of the equation is asymptotically linear and does not satisfy the Ambrosetti-Rabinowitz condition,the Mountain Pass Theorem without Palais-Smale condition is used to prove that the equation is of at least one positive solution in a weaker condition.
文中运用没有Palais-Smale条件的山路引理证明了在较弱的条件下,方程至少存在一个正解。
3.
Then,by applying the Mountain Pass Theorem,the existence of infinitely many solutions of the problem is confirmed.
在比(AR)条件更弱的条件下,先证明方程相应的泛函满足(PS)c条件,再应用山路引理得到了该问题无穷多解的存在性。
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条