说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 吴消元法
1)  Wu Elimination Method
吴消元法
1.
A suitable transformation(trigonometric function method)is found to change nonlinear Boussinesq differential equations into nonlinear algebra equations,which are solved by Wu elimination method and therewith the general soliton solutions of Boussinesq differential equations are obtained.
吴消元法求解该非线性代数方程组,从而获得一般形式Boussinesq微分方程的广义孤子解。
2.
In this paper, the main work and conclusions are as follows:(1) Introduction of Wu Elimination Method.
本文的主要工作和成果如下:(1)介绍吴消元法的基本内容。
3.
Wu elimination method is applied to solve the analytical solutions of power flow equations without extraneous roots or missing roots.
应用吴消元法求解潮流方程的全部解,做到不增不漏。
2)  Wu-elimination method
吴消元法
3)  Wu's method of elimination
吴消元法
1.
The algebra shape of Wu′s method of elimination;
吴消元法的初等代数形式
4)  Wu-elimination method
吴文俊消元法
1.
In this paper,many traveling wave solutions to NLS equations were obtained by using hyperbola function method and Wu-elimination method,which include new traveling wave solutions and rational traveling wave solutions.
借助计算机代数系统Mathematica,利用双函数法和吴文俊消元法,获得NLS方程的多组新的显式行波解,包括孤波解和周期解。
2.
In this paper,with the aid of computer algebra system mothematica,many traveling wave solution to Schrdinger equation are obtained by using hyperbola function method and Wu-elimination method,including new traveling wave solutions and rational traveling wave solutions.
借助计算机代数系统Mathematica,利用双函数法和吴文俊消元法,获得了Schr dinger方程的多组新的显式行波解,包括孤波解和周期解。
3.
With the help of Mathematica, new explicit and exact traveling solutions for the generalized (2+1)-dimensional Nizhnik-Novikov-Vesselov equation are obtained by using bifunction method and Wu-elimination method.
借助计算机代数系统Mathem atica,利用双函数法和吴文俊消元法,获得广义(2+1)维Nizhink-Novikov-Vesselov(GNNV)方程的多组新的显式精确行波解,包括孤波解和周期性解。
5)  Wu elimination method
吴文俊消元法
1.
With the help of the mathematic software Maple, one of the examples in Bai’s article is solved by using the improved method and the Wu elimination method.
借助数学软件Maple ,用改进后的方法和吴文俊消元法 ,求解BaiCL文中的一个例子 ,获得了包含Bai文结果在内的更为丰富、精确的行波解 。
2.
With the help of Mathematica, new explicit and exact traveling solutions for Boussinesq equation are obtained by using bifunction method and Wu elimination method, including new solitary wave solutions and periodic solutions, and the bifunction method is further complemented.
借助计算机代数系统 Mathematica,利用双函数法和吴文俊消元法 ,获得 Boussinesq方程的多组新的显式精确行波解 ,包括孤波解和周期性解 ,同时进一步补充和完善了双函数
6)  Wu algebraic elimination
吴代数消元法
1.
The hyperbolic function format of BBM equation has been worked out by means of trigonometric function and Wu algebraic elimination;the equation′s bell solitary wave solution worked out by parameter hypothesis;its trigonometric function solution reached by homogeneous balance and Riccati format.
利用三角函数法和吴代数消元法求出了BBM方程的双曲函数形式解 ;用参数假设法求出了该方程的钟状孤波解 ;利用齐次平衡和Riccati方程求出了BBM方程的三角函数形式
补充资料:吴法宪
吴法宪(1914~ )

    中国江西永丰人。1932年加入中国共产党。抗日战争和解放战争时期,历任新四军3师政治部主任,第四野战军十三兵团副政委。中华人民共和国建立后,历任广西军区副政委,空军副政委、政委,空军司令员,空军党委第一书记,全军文革小组副组长,副总参谋长,中央军委副秘书长,中共第九届中央政治局委员。1980年11月20日~1981年1月25日期间,中华人民共和国最高人民法院特别法庭对其公开审判,确认其在文化大革命期间,组织、领导反革命集团,积极参与林彪夺取最高权力的阴谋活动,是反革命集团案的主犯。1981年1月25日,被判处有期徒刑17年,剥夺政治权利5年。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条