2) rigid joint
刚接
1.
The results analyzing the rtuss as rigid joint or hinge joint in theory are indicated that the tube truss in practice is accordance well with the theoretical calculation as rigid joint or hinge joint,if axes joint of web members are at center of chord members.
通过对一榀 2 4m跨钢管屋架的静力试验研究及在理论上按刚接、铰接的计算结果分析表明 ,腹杆轴线交点与弦杆形心重合的管桁架 ,按刚接或铰接计算与实际受力状态均符合较
3) rigid connection
刚性连接;刚接
4) connect stiffness
联接刚度
1.
It is much more simplify to study the influences of the connect stiffness for the million – kilowatt – class nuclear power turbogenerator by the Reduce – Analysis method which is presented by the anthors.
用作者提出的Reduce分析法可大为简化联接刚度对核电百万千瓦级汽轮发电机轴系的动力特性影响之研究。
2.
A applied method:the Reduce-transfer matrix method,which is used to study the influence on the shafting critical speeds by the connect stiffness,is presented in the paper.
提出一种研究联接刚度对轴系临界转速影响的实用方法:Reduce-传递矩阵法,用该法可使联接刚度对轴系临界转速影响的常规灵敏度分析大为简化。
5) connecting stiffness
连接刚度
1.
By attaching an auxiliary surface between the assembled parts, defining the material properties of the auxiliary surface and connecting the assembled parts with the Multi-Point Constraints(MPC) technique, the practical connecting stiffness of the assembly structure can be simulated .
在装配结构接合面处添加附加面,利用多点约束(MPC)技术,将装配结构连接在一起,通过合理定义附 加面的材料属性来达到模拟装配零件之间实际连接刚度的目的。
6) joint stiffness
联接刚度
1.
The effect of the joint stiffness of back web members on the dynamic characteristics of the mast system for oil drilling is investigated by analyzing a real mast of the type ZJ20.
以一个实际井架 (ZJ2 0 )作为算例 ,探讨了背部腹杆联接刚度对“П”型井架系统动力特性的影响 ,研究了背部腹杆节点在空间铰、柱形铰和刚性三种理想联接方式下井架系统的动力特性 ,给出了前 6阶模态和自振频率。
2.
By means of the transfer matrix method and a program of the computer algebraic system, the paper obtains the equation with the joint stiffness as the unknown.
以传递矩阵法为基础,用计算机代数系统编程,导出以联接刚度为未知量的方程,输入杆件纵向振动的第二阶固有频率,从而识别出杆件的联接刚度,并通过实验来验证该法的正确性。
补充资料:星接阻抗和三角接阻抗的变换
星接阻抗和三角接阻抗的变换
transformation between starc-onnected and delta-connected impedances
x ing]一e乙日kongl介e sonJ一00}Iez日伙ongde匕一。一〕huon星接阻抗和三角接阻抗的变换(t ransfor-mation betweenstar一eonneeted and delta-eonneeted imPedanees)接成星形的三个阻抗和接成三角形的三个阻抗互相替代的等效变换。它们之间的关系可用一组变换公式表示。按这组公式,用星接阻抗替换三角接阻抗或者反过来,不会影响稳态下电路其他部分的正弦电压和电流,常用于对称三相电路的分析和计算。 图1为三个阻抗21、Z:、23接成星形(又称丫形)。图2为三个阻抗Z小22。、Zal接成三角形(又称△形)。它们之间的变换公式如下:人23土图1星接阻抗图2三角接阻抗(1)将星形连接变换成三角形连接212一Z:+22+2 122及3一22+za十警(1)、|冬|矛231一23+21+2321(2)将三角形连接变换成星形连接z、-二一典乒兴-) 艺‘2士乙“3十乙31…_2 oqZI,}Z。一下万~一二-二二-汁 乙‘2士乙23十乙3‘1_Z。IZoq}艺q一二二一~二,二二--,-二二-~J 乙12十乙23十艺32夕(2) 当三个星接阻抗相等,即21一Z:一23一z丫、三个三角接阻抗相等即212一223一231一Z△时,变换公式是 Z二一32丫,Z丫一Z△/3
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条