1) naturally sharing current
自然均流
1.
By connecting in parallel two-transistor forward converter modules and power switches in the input-end, and by connecting in series the converter modules in output-end, the proposed converter has many advantages such as naturally sharing current of power switc.
由于采用交错并联(interleaving)控制技术、以及利用功率MOSFET导通电阻的正温度系数特性,组合式变换器除具有双管正激变换器的内部桥臂抗直通能力强的优点外,还具有所有功率开关管自然均流、输入输出电压增益高、输出端二极管电压应力低、以及输入和输出滤波器体积小重量轻等特点。
2) naturally sharing voltage
自然均压
4) natural convection
自然对流
1.
Characteristics of natural convection flow and heat transfer in cavity with multi-openings;
多开口方腔内自然对流的流动与传热特性
2.
Numerical simulation of natural convection in the transient gas-liquid unsteady absorption process;
吸收过程自然对流非稳态数值模拟
3.
Comparison of natural convection with fire plumes in typical shafts;
典型竖井内火羽流与自然对流的比较
5) nature convection
自然对流
1.
Experimental study on heat transfer enhancement in nature convection in vertical plat by using delta-winglet longitudinal vortex generators arranged in rows;
多排纵向涡发生器强化竖直平板自然对流换热的实验研究
2.
In this paper, the phase-field models coupled with force flow, shear flow and nature convection are introduced respectively.
阐述了相场方法是凝固过程中对流效应数值模拟的有效方法,分别介绍了考虑强迫对流、剪流、自然对流的相场模型,综述了相场方法在对流领域研究中的应用情况,指出了该研究领域目前存在的问题及今后的发展方向。
3.
The authors study the nature convection in the liquid phase and flow pattern of nature convection during the process of solidification.
从传热学的角度出发,采用控制容积法对凝固过程进行了数值模拟,并考虑了凝固过程中的液相部分的自然对流,研究了液相部分自然对流的规律和流型。
6) natural river
自然河流
1.
The experiment of wastewater treatment by stabilization pond of natural river;
利用自然河流稳定塘进行污水处理的实验研究
补充资料:非均质流充填材料管道输送
非均质流充填材料管道输送
pipelining of fill with heterogeneous flow
粒径试,或累计重量50%对应的中位粒径成。代替式(4)或(5)中的物料粒径。 中国金川有色金属公司提出的水力坡度计算公式为 {___厂gD(八一1)门‘’2} 尹一‘〕{‘十’。8〔’寺“h[~不又兀万一」{式中yk为固体物料的密度,t/m3;其余符号意义与式(3)同。fe一1日nzhl{Iu eho叩tlon eo一}一00 guondoo shusong非均质流充填材料管道输送(pipelining。ffill with heterogeneo:一5 flow)固体颗粒不均匀地分布于液相载体中的充填材料浆体的管道输送方-法颗粒较大且浓度较低的充填材料浆体多以非均质流输送。非均质流浆体属于牛顿浆体。 非均质流浆体的临界淤积流速随着浆体流动速度的增大,在管道底部滑动的颗粒层刚刚消失时的流速非均质流浆体的摩阻损失与流速间的关系见图。非 {口训 彩}/丫洲/、、,l 彗厂一{ 。。速度。一 非均质流浆体和水的摩阻损失与流速的关系 1桨体的;2水的;二I,临界淤积流速均质浆体的这种关系与水的摩阻损失差别很大。曲线1的d/)段表示,当流速增大到一定程度时,原来淤积在管底的固体颗粒开始运动、其中绝大部分颗粒处于不连续跳跃状态;随着流速的增大,水流本身的摩阻损失增加,消耗于颗粒滑动和悬浮的能量也增大,因此压失损失随流速的增大而增加。曲线1的从段表示随着流速的增大,间歇性悬浮的颗粒越来越多,沿管底滑动的颗粒越来越少,这时水流本身的压头损失虽然随流速的增大而增加,但消耗于滑动的能量却随之减少,结果总压头损失因增加值小于减少值而减少曲线]的、d段表示,在全部颗粒完全悬浮后,随着流速的增大压头损失也逐渐增加。点c所对应的流速就是临界淤积流速对于临界淤积流速:。。,许多学者都提出了不同的计算公式。其中由前苏联学者由约芬(入.11.汁巾,‘,)提出,经科别尔尼克‘c.{’.川卜。附f,,门修正的计算公式为 /一15梅振{会一().4卜m·(1) 劝)一‘5梅梅{会一曰}酬,m/s(2)式中I)为管道直径,m;休为平均粒径的固体颗粒在水中自由沉降末速,m肠;z。为浆体比重;找为水比重;。为均匀系数,。一3比公。。,d〕和碗分别为重量从小粒径向大粒径累计的曲线上1。环和9。%对应的粒径式(l)和式(2)适用于浆体重度小十或等于1.25t/m“式(l)适用于颗粒平均直径为。.环~。.60mm的均匀颗粒尾矿。式(2)适用于颗粒平均直径大于。.15mm的不均匀颗粒尾矿。 非均质流浆体水力坡度的计算预估非均质流浆体的水力坡度只限于在实际工程中常常遇到的紊流情况。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条