1) Relative static strength
相对静力学强度
2) relative paleointensity chronostratigraphy
相对强度年代学
3) static strength
静力强度
1.
For studying the influence of the horizontal inner plate on the static strength of tubular joints,overall 62 T-joint models with and without reinforcements are analyzed usingfinite element method.
为了研究横向内置插板对节点静力强度的影响,采用有限元方法,对62个加强与未加强的T形节点模型进行了有限元模拟和分析。
4) relative strength
相对强度
1.
A Study on Evaluation of Relative Strength for Different Polymer Gels Used at Oil Fields;
油田用聚合物凝胶相对强度表征方法研究
2.
The early-age relative strength-simplify maturity equation was concluded from this research and the relative strength when simplified maturity reached 600d was discussed.
本文基于简化成熟度理论,试验研究了粉煤灰混凝土在模拟同条件养护下的早期相对强度发展情况,得出了其早期相对强度预测公式,并按照《混凝土结构工程施工质量验收规范》(GB50204-2002)的相关要求,对该类混凝土等效养护龄期及同条件养护至600℃。
3.
Based on the preliminary researches on tube clearance, overdistension measure, total distension measure, weld relative strength, destructive pressure test in producing copperaluminum combined columnwingtype radiator, discusses crucial skills to improve the technical and provides the basis for manufacture and standardization of the radiator.
通过对铜铝复合柱翼型散热器生产加工中的穿管间隙、过盈胀管量、总胀管量、焊接相对强度、破坏压力试验等方面的初步研究 ,探讨了改进工艺的关键技术 ,为此种散热器的推广生产和标准制订提供了依据。
5) relative intensity
相对强度
1.
Observations of the relative intensity of the Zeeman effect of Hg and measurement of the Landé g-factor;
Hg的Zeeman效应相对强度实验观察与朗德g因子测量
2.
Determination of relative intensity for Zeeman spectrum line of HgI;
测定汞原子塞曼谱线相对强度
3.
At first, the authors numerically calculate many apparent polarizability sounding curves of various IP ore bodies below undulatory terrain by using the improved 2 dimension finite element program, then present the relative intensity method locating the target on mountainous districts for Fixed Point Source Sounding(FPS).
采用有限元法对起伏地形下存在不均匀极化体时的多种地电断面进行了固定点源测深的正演数值模拟计算;提出并实现了在起伏地形下利用固定点源测深法资料作相对强度断面图、确定极化体空间位置的方法;通过对不同条件下数值模拟结果的定量解释计算和分析,证明了该方法的有效性;初步总结出了地形对定量解释结果的影响规律。
6) pairing strength
对力强度
1.
It is shown, for the first time, that the pairing strength of the neutron, Gn, increases dramatically around the magic number N=82, while for the proton it is strongly related to the odd-even difference of the neutron number.
在相对论平均场框架下系统地研究了稀土区同位素链的对力强度,首次发现了中子的对力强度 Gn在中子幻数N=82处突然增大以及质子的对力强度Gp和中子的奇、偶性有关的特性,证明了对力强度本质上是和核的壳层结构紧切相关。
2.
The clear shell effect of the pairing strength is proved based on the frame of the relativistic mean filed theory.
在相对论平均场理论框架下,首先证明了对力强度存在明显的壳效应,然后用此方法研究了 Z=96-102区域内超重同位素链中中子壳封闭问题,证明了在超重元素中,N=184处确实存在壳封闭。
补充资料:潮汐静力学理论
自从I.牛顿用引潮力解释潮汐运动之后,潮汐动力的基本问题已经清晰,但用牛顿的理论直接研究海洋中的潮汐问题时,遇到非常复杂的数学困难。为此,必须将海洋所占据的空间区域,理想化为它具有简单的几何形状。1740年,D.伯努利从静力学平衡的角度出发,假设地球表面都被海洋所覆盖,而且海面在任何时刻都能够保持与重力和引潮力的合力处处垂直。这种理想化了的海洋潮汐,称为平衡潮。伯努利的这种学说,称为平衡潮学说。在此学说的基础上建立起来的一种潮汐理论,为潮汐静力学理论。这是继牛顿之后第一个提出的潮汐理论。
由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高为
式中γ为地球半径的平均值,θ为月球的天顶距,M 为月球的质量,E 为地球的质量,D为月-地距离,哹 为月-地平均距离,m 为长度单位"米"。由太阳引潮力所产生的太阳平衡潮的潮高,也有类似的表达式。
如果在公式中取D =哹,且当θ=0°或180°时,=0.356米,而当θ=90°或270°时,=-0.178米,这表明平衡潮面在对着月球和背着月球的地点形成高潮,而在矢径与地球和月球的中心连线垂直的地点,形成低潮。对固定地点来说,由于地球自转和月球绕地球公转,月中天时刻每天约推迟50分钟,因此潮汐在一个太阴日(平均约24时50分)内通常有两次高潮和两次低潮,而且高潮和低潮发生的时刻,平均每天都推迟50分钟。
每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。
大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。
为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为
对于太阳平衡潮来说,也有类似的表达式。此公式表明,太阴平衡潮具有 3种基本周期:半日周期、全日周期和长周期。就时角A而言,对地球上任何地点来说,由于月球和太阳都约有360°的时角变化,2A在一日之间有720°的变化,故第一项为半日周期项,它的振幅与cos2δ 成正比,而月球的δ 变化范围为0°~±28.6°,故cos2δ变化于0.77~1.00之间,因此对一定地点来说,太阴(太阳)半日潮的高(低)潮的时间主要决定于时角,但月-地(日-地)距离和月球 (太阳)赤纬对潮差也有一定的影响。式中第二项的时角为全日周期项,但是对于月球来说,sin2δ大约具有周期为半个月的变化,而对于太阳则具有周期为半年的变化。在赤纬为0°时,全日周期项为零;当赤纬不为零时,除赤道外,在地球上其他各点,半日潮和全日潮同时存在,叠加的结果,就出现日潮不等的现象。随着赤纬的增大,日潮不等的现象更加显著,在赤纬达极值时最为突出。公式的第三项不包括时角,仅由赤纬决定。对于月球,其周期约为半个月;对于太阳,则为半年。这都属于潮汐变化中的长周期部分。
平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。
由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高为
式中γ为地球半径的平均值,θ为月球的天顶距,M 为月球的质量,E 为地球的质量,D为月-地距离,哹 为月-地平均距离,m 为长度单位"米"。由太阳引潮力所产生的太阳平衡潮的潮高,也有类似的表达式。
如果在公式中取D =哹,且当θ=0°或180°时,=0.356米,而当θ=90°或270°时,=-0.178米,这表明平衡潮面在对着月球和背着月球的地点形成高潮,而在矢径与地球和月球的中心连线垂直的地点,形成低潮。对固定地点来说,由于地球自转和月球绕地球公转,月中天时刻每天约推迟50分钟,因此潮汐在一个太阴日(平均约24时50分)内通常有两次高潮和两次低潮,而且高潮和低潮发生的时刻,平均每天都推迟50分钟。
每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。
大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。
为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为
对于太阳平衡潮来说,也有类似的表达式。此公式表明,太阴平衡潮具有 3种基本周期:半日周期、全日周期和长周期。就时角A而言,对地球上任何地点来说,由于月球和太阳都约有360°的时角变化,2A在一日之间有720°的变化,故第一项为半日周期项,它的振幅与cos2δ 成正比,而月球的δ 变化范围为0°~±28.6°,故cos2δ变化于0.77~1.00之间,因此对一定地点来说,太阴(太阳)半日潮的高(低)潮的时间主要决定于时角,但月-地(日-地)距离和月球 (太阳)赤纬对潮差也有一定的影响。式中第二项的时角为全日周期项,但是对于月球来说,sin2δ大约具有周期为半个月的变化,而对于太阳则具有周期为半年的变化。在赤纬为0°时,全日周期项为零;当赤纬不为零时,除赤道外,在地球上其他各点,半日潮和全日潮同时存在,叠加的结果,就出现日潮不等的现象。随着赤纬的增大,日潮不等的现象更加显著,在赤纬达极值时最为突出。公式的第三项不包括时角,仅由赤纬决定。对于月球,其周期约为半个月;对于太阳,则为半年。这都属于潮汐变化中的长周期部分。
平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条