说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 轨道静态几何参数
1)  track static parameter
轨道静态几何参数
1.
Development and application of a new kind of track static parameter measurer;
新型轨道静态几何参数检测仪的研制及应用
2)  orbital geometry parameter
轨道几何参数
1.
This paper describes the relationship between three conservation quantities and the orbital geometry parameter by using the geometry property of special points on orbit.
本文利用轨道特殊点的几何特性 ,十分简捷地得到了三守恒量与轨道几何参数的关系 。
3)  trajectory geometry
轨道几何
4)  Geometry parameter of channel
河道几何参数
5)  geometrical and configuration parameters
几何和形态参数
1.
These microscopic compositions(FI) or structures(FIP and FIL) with different geometrical and configuration parameters may record the history of deformations and/or fractures in rocks.
具有不同几何和形态参数的微观成分和显微构造记录岩体变形和破坏过程的重要信息。
6)  Static geometry
静态几何
补充资料:铁路轨道几何形位
      轨道上两股钢轨在平面和立面上的相互位置。在直线段,平面上左右两股钢轨要保持与轨道中线相等距离和一致的方向;在立面上,除了随着线路纵断面的变化保持一致高度外,在每一横断面上左右两轨顶面应保持同一高度。在曲线段,使外股相对于内股应保持一定的高差,两轨间的距离要比直线加宽。在不致影响列车安全与正常运行前提下,对上述的标准要求,都允许有一定的误差,并根据线路等级的不同,各国都规定了自己的标准。
  
  轨距  为两根钢轨头部内侧间与线路中线垂直方向上的距离,在轨顶面以下规定的部位量取。由于轨头断面的圆弧及侧面斜度的不同,这个部位在不同的国家规定有不同的数值,如中国为16毫米(图1),联邦德国为14毫米,法国为15毫米,苏联为10毫米。轮对上左右两车轮内侧面之间的距离,加上两个轮缘厚度,称为轮对宽度。轮对宽度应略小于轨距,使轮缘与钢轨内侧保持必要的间隙,以利于在轨道上行驶的车辆轮对都能顺利通过,而不使轮对楔住在轨道内,也不致引起车辆过度的摆动。
  
  
  中国规定直线地段的标准轨距为1435毫米,允许误差为+6~-2毫米;轨距变化必须和缓,每米距离内不可有大于2毫米的差异。随着车速日益提高,世界各国正研究缩小钢轨与轮缘间的间隙,以增加行车的平稳性。如英国在混凝土枕轨道上已采用1432毫米(木枕轨道仍为1435毫米)的轨距。苏联自1971年起采用1520毫米(原为1524毫米)。
  
  水平形位  直线地段两轨应保持同一高度,使两轨负荷均匀,允许有一定误差。中国铁路的规定,是按线路种类的不同,分别为不大于4~6毫米。轨道不允许有三角坑存在,即在一段不太长的距离内,不允许左右两轨高差交替变化,以致引起车辆剧烈摇幌。对于不同线路种类,中国铁路规定,在18米距离内,不许有超过4~6毫米的三角坑存在。过大的三角坑会使个别车轮悬空,轮缘爬上轨面,而发生脱轨事故。
  
  轨底坡  车轮轮箍和钢轨接触的面为1/20的圆锥面。为了使车轮压力的合力线更接近于钢轨中轴线,以减小偏磨,钢轨不是竖直铺设,而是略向轨道中心倾斜。这种倾斜度称轨底坡。中国铁路过去采用1/20的轨底坡(直线地段)。自1965年起改为1/40。其原因是车轮踏面(轮箍和钢轨接触的面)经过一段时间的磨耗后,斜度已接近于1/40。
  
  曲线地段轨道几何形位  曲线轨道构造与直线地段有不同特点:①曲线半径较小时,轨距适当加宽;②外轨增设超高;③曲线两端与直线连接处设置缓和曲线。
  
  轨距加宽  机车车辆进入曲线轨道时,因惯性作用,仍然力图保持其原来行驶方向,仅当前轴外轮碰到外轨,并受到外轨引导,才沿着曲线轨道行驶。这时车辆的转向架与曲线在平面上保持一定的位置和角度。可能出现三种不同情况:第一种情况是当轨距足够宽时,只有前轴外轮的轮缘受到外轨的挤压力(称导向力),后轴则居于曲线半径方向,两侧轮缘与钢轨间都有一定的间隙,行车阻力最小;第二种情况是当轨距不够宽时,后轴(或其他一轴)的内轮轮缘也将受到内轨的挤压(图2),产生了第二导向力,行车阻力较前者增加;当轨距更小时,可能出现第三种情况,此时不但中间某轴内轮受内轨挤压,而且后轴外轮也受到外轨挤压,车轮被楔住在两轨之间,不仅行车阻力大,甚至可能把轨道挤开。因此小半径曲线上轨距必须加宽。在确定轨距加宽时,须根据铁路机车车辆的轴数和轴距,计算轨距能允许车辆以何种情况通过曲线。确定轨距加宽的原则是:①保证最常用的车辆转向架能以第一种情况自由通过曲线;②保证轴距较长的多轴机车能以第二种情况通过,而不致出现第三种情况。根据上述原则算出的曲线轨道的轨距,减去直线上的标准轨距,称轨距加宽值。中国轨距加宽值,按照曲线不同半径,过去分为三级加宽,后改为两级加宽,每级5~10毫米。但包括6毫米容许误差在内,轨距最大不得超过1456毫米,以保证轮对平稳、安全地通过曲线。
  
  
  外轨超高  列车在曲线上行驶对轨道产生离心力,使外轨承受较大的压力,发生严重的侧面磨耗,并使旅客感觉不适,严重时甚至造成列车倾覆事故。为此,须将外轨抬高一定程度,借助于因车体内倾所产生的重力内向分力来平衡这种离心力(图3)。外轨抬高的数量,称外轨超高度。由列车通过时离心力的大小确定。离心力与车速平方成正比,与曲线半径大小成反比,因此半径越小,车速越大,离心力越大,需设的超高就越大。在车速和曲线半径都为已知的情况下,借助于上述各力的平衡关系,按使两轨垂直磨耗均等的条件,可得外轨超高的计算公式为
  
  h=11.8v2/R式中超高h以毫米计;速度v以公里/时计;半径R以米计。
  
  由于通过曲线的各种列车的车速和车重各不相同,车速高的偏磨外轨,低速车则偏磨内轨,为了达到两轨磨耗均等,可采用下面的平均速度v来计算超高:
  
   式中N为列车次数;P为列车重量;vi为列车实际速度。
  
  若按两轨磨耗均等的原则设置超高,因所受的离心加速度过大,有时会使高速列车中的旅客感觉不舒适。因此,还要根据旅客舒适度条件进行检验,如不能满足要求时,应再调整超高。旅客感受的外侧离心加速度ɑ按下式作近似计算
  
  
  
  
  式中ɑ以米/秒2计,其余仍如上述。
  
  当vi大于v时,上式ɑ为正值,这是离心力大于超高所提供的向心力,说明超高度不足(即欠超高);当vi小于av时,ɑ为负值,这时离心力小于超高度所提供的向心力,说明超高过大(即余超高)。欠超高和余超高都使旅客感觉不适,且与ɑ的绝对值成正比。若命该超高的差值为△h,当|ɑ|分别为0.6、0.5、0.4米/秒2时,则△h相应为92、76、61米毫。
  
  由于具体条件不同,各国规定的允许离心加速度有些差别。一般而言,离心加速度如不超过0.6米/秒2,旅客不致有不舒适的感觉。中国铁路规定:在山区铁路,其值不得大于0.6米/秒2;平原区域或复线不得大于0.4~0.5米/秒2(见铁路线路平面)。实际设置超高时,取其整数到5毫米,最大超高为150毫米;单线上下行速度悬殊时不超过125毫米,以防临时停车,内轨受过大偏压。
  
  缓和曲线  设于圆曲线与直线相接处,使圆曲线的轨距加宽及外轨超高,可以在缓和曲线范围内逐渐完成。缓和曲线的曲率是渐变的,从零变至与圆曲线曲率相同;超高也是渐变的,因而列车由直线进入曲线时,车体所受的离心力与向心力也是渐变的。为使这两种力处处平衡,可推导出这曲线的线型是一空间的高次方程。
  
  在纵断面上,如果外轨超高按直线规律递增,即为各国常用的三次螺旋线。然而它在直缓点(直线与缓和曲线连接点)及缓圆点(缓和曲线与圆曲线连接点)上仍不免有力的突变。为了消除这种突变,超高的递增率可采用高次方程表示,使外轨作成曲线型的顺坡。如联邦德国在高速线上采用两个二次代数式,日本的高速线上采用余弦型曲线顺坡,都属于这一类型。中国自50年代以来,对缓和曲线理论作过大量研究,提出多种类型,有的曾在一些铁路上试铺过,取得一定效果。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条