1) interval polynomial
区间多项式
1.
PID controllers based on the interval polynomial stabilization theorem;
基于区间多项式稳定性理论的PID控制器
2.
Not only the H ∞ norm calculating guestion of the robust stability of the mixed-type perturbation in the interval polynomial family is studied, but also the range which can be done is enlarged to that of the more general linearly dependent cofficients perturbation.
本文讨论了不确定性系统的鲁棒稳定性分析问题,不仅研究了区间多项式族混和摄动的鲁棒稳定性中H∞的计算问题,而且将研究的范围从区间多项式族扩展到更具一般性的线性相关系数摄动的系统,以值域断面的几何性特为基础,提出了一种形象直观,简便实用的混和型摄动系统鲁棒稳定性的分析方法。
3.
This paper studies how to estimate the change of zeros of an interval polynomials.
本文讨论区间多项式零点变动的估计问题,取得了一些新结果,并将其用于闭环系统极点变动分析。
2) Interval Polynomials
区间多项式
1.
For an uncertain system described by convex combination of interval polynomials, its Hurwitz-stability can be guaranteed by certain subset composed of vertices and edges.
对于由区间多项式的凸组合描述的不确定系统 ,它的Hurwitz稳定性可由某个仅由顶点和棱边构成的子集来保证 ,且此集合的大小与系统的维数无
3) interval matrix polynomial
区间矩阵多项式
1.
Since the parameter space of interval matrix polynomials with N order and K×K dimension is of 2NK 2\ dimension at most, it is difficult to determine their Hurwitz and Schur stability by finite test algorithms.
由于N阶区间矩阵多项式的参数空间的维数最大可达 2NK2 维 ,采用有限检验算法确定其Hurwitz与Schur稳定性是很困难的 。
4) complex interval polynomial
复区间多项式
1.
A finite decision theorem that all zeros of a complex interval polynomial are located in an open complex semiplane is given.
给出了复区间多项式的零点皆位于开半平面内的一个有限判别定理。
5) interval polynomial family
区间多项式族
1.
Moreover,the number of vertex polynomial to be checked can be reduced for interval polynomial family and diamond polynomial family.
针对凸多面体多项式族,指出在一定条件下,其整族多项式的鲁棒振动性可由其顶点多项式振动性检验得到,对于区间多项式族和菱形多项式族,需要检验的顶点多项式数目还可进一步减少。
6) Interval polynomials with complex coefficients
复系数区间多项式
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。