说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 无网格移动粒子法
1)  Moving Particle Semi-implicit
无网格移动粒子法
1.
The flashing liquid injection into another ambient liquid is two-dimensionally simulated using a meshless particle method(called Moving Particle Semi-implicit(MPS) method).
采用具有良好捕捉流体界面特性的无网格移动粒子法(MPS粒子法)对闪蒸射流过程进行二维直接数值模拟。
2)  particle in cell
粒子网格法
1.
Using 2D axisymmetrical model, a hybrid particle-fluid model was used to model plasma dynamics of the stationary plasma thruster (SPT) plume, which includes the particle in cell (PIC) method and the direct simulation Monte Carlo (DSMC) method.
采用二维轴对称模型,使用粒子网格法(PIC)和直接模拟蒙特卡洛法(DSMC)相结合的方法,对稳态等离子体推进器(SPT)羽流场进行了数值模拟。
3)  particle clouds in cells methods
粒子云网格方法
4)  moving mesh based on deformation
移动网格变形法
5)  moving mesh methods
移动网格方法
6)  Marker-in-cell
网格-粒子
补充资料:数论网格求积分法
      高维数值积分数论方法研究开始于20世纪50年代末,其理论基础是数论中的一致分布论。命Us表示 s维单位立方体。假定是Us上定义的函数,并假定存在且其绝对值以C为界。命 是Us中具有偏差D(n)的点集。所谓数论方法就是用被积函数在p(k) (1≤k≤n)上值的算术平均作为Us上定积分的近似值,而误差由下面的公式给出:
  
  J(??,p(k))就是由点集p(k)(1≤k≤n)定义的一个求积公式。因此寻求Us上最佳求积公式的问题即等价于寻求Us上最佳偏差的点集的问题。从计算方法的观点看,不仅要求点集p(k)(1≤k≤n)的偏差小,而且要求p(k)的形式简单,易于计算。
  
  ① 科罗博夫-劳卡方法 命p表示素数,a=(α12,...,αs)表示整数向量,科罗博夫和E.劳卡证明了,对于任意p,皆存在a,使点集有偏差。也就是说用点集Q(k)(1≤k≤p)构造的求积公式有误差。对于p求出a的计算量为O(p2)次初等运算。因此当p较大时,算出a来很困难。
  
  ② 分圆域方法 分圆域是一个次代数数域。利用 的独立单位组可得它的一个适合于
  的单位列nl(l=1,2,...),其中表示nl的共轭数。如果使则得点集
  用这一点集构造的求积公式的误差为
  
   式中ε为任意正数。算出nl、hjl(1≤j≤s-1)的计算量为O(lognl)。因此算出nl和没有困难,但缺点是误差略为偏大些。
  
  当2≤s≤18时,上述的p、a、nl和h都已汇编成表,可供查阅。
  
  数论方法得到的求积公式的误差主阶均与维数无关,所以当s较大时,用数论方法近似计算Us上的定积分比较合算。
  
  

参考书目
   华罗庚、王元著:《数论在近似分析中的应用》,科学出版社,北京,1978。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条