1) elastic floating raft system
弹性浮筏系统
2) elastic floating raft
弹性浮筏
1.
In this paper, theories of multi-body dynamics and structural dynamics are combined to apply to the dynamic modeling of the elastic floating raft system.
本文以多体动力学和结构动力学为理论基础,对弹性浮筏隔振系统进行动力学建模,考虑筏体的刚体运动和弹性变形的耦合,由此推导出整个隔振系统的动力学振动方程。
3) floating raft system
浮筏系统
1.
Calculation of vibratory power transmission of complex floating raft system by FEM;
基于有限元方法的复杂浮筏系统功率流计算(英文)
2.
Analytical approach of vibration isolation effect for floating raft system;
浮筏系统隔振效果评估方法
3.
Vibration isolation and underwater acoustic radiation test of ship cabin floating raft system;
船舱浮筏系统的隔振性能及水下声辐射试验
4) floating raft system
浮筏隔振系统
1.
Research shows that the application of dynamic vibration absorbers(DVAs) can significantly improve the low frequency isolation performance of floating raft system.
浮筏隔振系统是一种广泛应用的减振降噪装置,但它在低频减振方面还存在较大不足。
2.
Patran were associated to establish the finite element model for the floating raft system.
Patran相结合的方法创建浮筏隔振系统的有限元模型,通过MSC。
5) the whole raft
整舱浮筏隔振系统
1.
In this paper FEM and SEA have been used to calculate the whole raft power flow.
采用FEM和SEA方法计算整舱浮筏隔振系统传递的功率流,初步分析整舱浮筏隔振系统功率流传递特性。
6) elastic system
弹性系统
1.
On the basis of this the author uses it the elastic system mode to subdivide the factors that influence prices and then construct the elastic system mode for price fluctuation to explain the features and main driving sour.
在此基础上,借鉴物理学的弹性系统模型,对影响价格因素细分,进而构建价格波动的弹性系统模型,来更好地解释价格波动的特性和主要动力源泉,并为市场分析提供有效的思路。
2.
In this paper we give a survey on stability for the elastic systems with local viscoelasticity or a pointwise feedbackforce.
本文对具有粘弹性阻尼结构的弹性系统及具有点反馈的弹性系统稳定性做一综述。
补充资料:弹性系统稳定性
弹性材料组成的系统在外力作用下会发生弹性变形并达到变形后的平衡状态。弹性系统的平衡状态有三种形式:稳定平衡、不稳定平衡和随遇平衡(或中性平衡)。若弹性系统在稍微偏离其平衡位置后,能够回到或有趋势回到它原来的平衡位置,则称原平衡状态为稳定平衡状态;若继续偏离下去,则称为不稳定平衡状态,这时,弹性系统失去稳定性,简称失稳或屈曲;随遇平衡状态通常是从稳定平衡向不稳定平衡过渡的中间状态。
失稳形态 弹性系统受到某一与参数λ成比例的载荷系统作用而发生变形,记同λ对应的广义位移(线位移或角位移)为u,若系统处在不稳定平衡状态,则在λ-u的变形路线上可能出现两种失稳形态:分支点失稳(或分岔点失稳)和极值点失稳。分支点失稳的特征是在λ-u变形路线上,当载荷参数增大到某值λc时,原先的稳定平衡状态附近存在着另外一个相邻的势能更小的平衡状态,在分支点λ=λc处两种不同平衡状态的稳定性发生转换。极值点失稳过程没有分支点,但是在变形途径中存在一个同最大载荷对应的参数值λ(极值),在载荷参数达到该值后,变形迅速增大,载荷随之减小,弹性系统的承载能力迅速下降,最后导致弹性系统发生屈曲破坏。λ-u变形曲线上的分支点和极值点都称为临界点,λc和λ都称为临界值,相应的平衡状态称为临界状态。在弹性结构系统中,如在杆系、拱、薄板、薄壳结构中,失稳主要是由弹性系统内的压应力引起的。
判别平衡状态稳定性的准则 有静力学准则、动力学准则和能量准则三种。①静力学准则,又称为微扰动准则,其要点是,假设在分支点附近存在一个相差无限小的平衡状态,它同原平衡状态的差别可以看成微扰动(即变分),列出微扰动的微分方程,问题就归结为微分方程的本征值问题,解出本征值,便可得到系统失稳的条件(见弹性稳定性的本征值问题)。②动力学准则,其要点是,在有限自由度的广义坐标空间中,一个以坐标ui(i=1,2,...,n)描述其位置的系统的平衡状态为ui=0,系统随时间而变化的速度为夦i。如果系统偏离其平衡位置,但总可以找到初始值u孂和夦孂,使得在以后的运动中,|ui|和|夦i|不越出某些预先规定的界限,就可认为系统处于稳定平衡状态。③能量准则,其要点是,如果弹性系统和外载荷组成的力学系统的总势能相对于所有相邻状态是最小的,则系统处于平衡状态。
研究简史 早在18世纪,L.欧拉就已率先从理论上研究了细压杆的弹性稳定性问题(见柱)。19世纪以后,钢结构的大量应用,使弹性结构稳定性问题得到普遍重视。20世纪的科学技术,尤其是宇航、航空、精密仪表以及各种大型工程结构的现代设计,遇到了各种类型的稳定性问题。随着材料科学的迅速发展,出现了高强度合金材料和复合材料,轻型结构(如薄板、薄壳结构等)的应用日益广泛,弹性系统稳定性在近代工程结构设计中也就显得更为重要,并获得迅速的发展。1939年T.von卡门和中国的钱学森等开创性地提出了非线性大挠度理论,其结果同当时许多实验结果相近。随后,荷兰的W.T.科伊特在研究工程结构缺陷的基础上,提出了"初始缺陷敏感度"概念,并建立了初始后屈曲理论。他的理论给出了判断临界点的稳定性的充分必要条件。近年来,弹性系统稳定性的随机缺陷分析、弹性系统的动力稳定性分析等都有迅速的发展。
失稳形态 弹性系统受到某一与参数λ成比例的载荷系统作用而发生变形,记同λ对应的广义位移(线位移或角位移)为u,若系统处在不稳定平衡状态,则在λ-u的变形路线上可能出现两种失稳形态:分支点失稳(或分岔点失稳)和极值点失稳。分支点失稳的特征是在λ-u变形路线上,当载荷参数增大到某值λc时,原先的稳定平衡状态附近存在着另外一个相邻的势能更小的平衡状态,在分支点λ=λc处两种不同平衡状态的稳定性发生转换。极值点失稳过程没有分支点,但是在变形途径中存在一个同最大载荷对应的参数值λ(极值),在载荷参数达到该值后,变形迅速增大,载荷随之减小,弹性系统的承载能力迅速下降,最后导致弹性系统发生屈曲破坏。λ-u变形曲线上的分支点和极值点都称为临界点,λc和λ都称为临界值,相应的平衡状态称为临界状态。在弹性结构系统中,如在杆系、拱、薄板、薄壳结构中,失稳主要是由弹性系统内的压应力引起的。
判别平衡状态稳定性的准则 有静力学准则、动力学准则和能量准则三种。①静力学准则,又称为微扰动准则,其要点是,假设在分支点附近存在一个相差无限小的平衡状态,它同原平衡状态的差别可以看成微扰动(即变分),列出微扰动的微分方程,问题就归结为微分方程的本征值问题,解出本征值,便可得到系统失稳的条件(见弹性稳定性的本征值问题)。②动力学准则,其要点是,在有限自由度的广义坐标空间中,一个以坐标ui(i=1,2,...,n)描述其位置的系统的平衡状态为ui=0,系统随时间而变化的速度为夦i。如果系统偏离其平衡位置,但总可以找到初始值u孂和夦孂,使得在以后的运动中,|ui|和|夦i|不越出某些预先规定的界限,就可认为系统处于稳定平衡状态。③能量准则,其要点是,如果弹性系统和外载荷组成的力学系统的总势能相对于所有相邻状态是最小的,则系统处于平衡状态。
研究简史 早在18世纪,L.欧拉就已率先从理论上研究了细压杆的弹性稳定性问题(见柱)。19世纪以后,钢结构的大量应用,使弹性结构稳定性问题得到普遍重视。20世纪的科学技术,尤其是宇航、航空、精密仪表以及各种大型工程结构的现代设计,遇到了各种类型的稳定性问题。随着材料科学的迅速发展,出现了高强度合金材料和复合材料,轻型结构(如薄板、薄壳结构等)的应用日益广泛,弹性系统稳定性在近代工程结构设计中也就显得更为重要,并获得迅速的发展。1939年T.von卡门和中国的钱学森等开创性地提出了非线性大挠度理论,其结果同当时许多实验结果相近。随后,荷兰的W.T.科伊特在研究工程结构缺陷的基础上,提出了"初始缺陷敏感度"概念,并建立了初始后屈曲理论。他的理论给出了判断临界点的稳定性的充分必要条件。近年来,弹性系统稳定性的随机缺陷分析、弹性系统的动力稳定性分析等都有迅速的发展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条