1) Automatic text classification
自动文本分类
1.
Statistical Automatic Text Classification Methods in Digital Libraries;
数字图书馆中基于统计的自动文本分类方法研究
3) automatic text categorization
文本自动分类
1.
Study of automatic text categorization based on CBR;
基于CBR的文本自动分类研究
2.
Research on Automatic Text Categorization System Based on Neuron Network;
基于神经网络的文本自动分类系统的研究
3.
So builds up an automatic text categorization based on agent.
文中构建一种基于Agent技术的文本自动分类系统,仅需要对文档头进行信息处理就可以进行快速文本分类,有效地减少了文本分类过程中的时间和空间的消耗。
4) automated text categorization
文本自动分类
1.
Research on Automated Text Categorization Based on RBF Network;
基于RBF网络的文本自动分类的研究
5) Text Categorization
文本自动分类
1.
Application of SVM to text categorization;
SVM在文本自动分类中的应用
2.
Model of Domain Natural Language Text Categorization and Its Application on Requirement Analysis of Mechanical;
面向领域自然语言的文本自动分类及其在产品设计中的应用
3.
Automatic text categorization(ATC) is the most popular text processing techniques and one of the hot issues in the fields of machine learning,natural language processing and information retrieval.
文本自动分类是目前最常用的文本信息自动处理技术,也是机器学习、自然语言处理和信息检索领域的研究热点之一。
6) Text automatic classification
文本自动分类
1.
Text Automatic Classification is an important application field of natural language process, an efficient means and necessary trend to substitute the troubled traditional manual classification.
文本自动分类技术是自然语言处理的一个重要的应用领域,是替代传统的繁杂人工分类方法的有效手段和必然趋势。
补充资料:自动分类
用计算机系统代替人工对文献等对象进行分类。一般包含自动聚类与自动归类。
自动聚类由计算机系统按照被考察对象的内部或外部特征,根据一定的要求(如类别的数量限制,同类对象的亲近程度等等),将相近、相似或相同特征的对象聚合在一起的过程。目前常用的自动聚类方法有:关联词法、文献--文献相似矩阵法、聚丛法和因子分析法等。自动归类是指计算机系统按照一定的分类标准或分类参考,将被考察对象划归到不同类目的过程。目前常用的自动归类方法有语义分析法、语法分析法和统计法等。
在文献的手工分类过程中,人们往往根据文献的主题内容,以公认的科学分类体系(如《杜威十进分类法》、《国际十进分类法》、《中国图书资料分类法》等),来决定每篇文献的分类号。可以说,文献的分类过程,就是人们根据一定的分类标准给文献以分类号的过程。文献分类的目的是为了便于人们按文献的内在特征,即所属类别进行查找。自动分类与手工分类相比,其类目体系的决定更科学、更灵活,文献的定类更整齐划一。同时,由于劳力的限制,人工分类往往不细、不全(大多一篇文献划归一类),而自动分类则可克服这些缺点,并有很大的潜力。特别是自动聚类与自动分类的结合,将使自动分类体系具有新陈代谢的生命特征,并将为高效的聚类检索奠定基础。
文献的自动分类研究始于20世纪60年代初,最早是由R.M.尼达姆等人进行的。从马罗的第一个自动分类模型发展至今,无论在理论研究上还是实际运用上均取得相当的进展。由于种种原因,特别是中文计算机处理能力的限制,在中国关于自动分类的研究还刚刚开始不久。
由于计算机自动分析主题等研究还没有取得实质性的进展,所以,现在自动分类大部分都建立在题中或文摘中关键词的基础上,它的缺点是不能准确地按文献主题分类。但据有关资料表明,专家的偏爱也常使其分类的质量与普通标引员的分类质量相差无几,而自动分类现有的水平与之也差不多,然而其速度与规定性则是手工分类无法比拟的。因此,它正在受到人们越来越大的重视,成为情报检索中一个重要的研究与发展方向。特别是它与聚类检索的结合,将使其有更强的生命力。
自动聚类由计算机系统按照被考察对象的内部或外部特征,根据一定的要求(如类别的数量限制,同类对象的亲近程度等等),将相近、相似或相同特征的对象聚合在一起的过程。目前常用的自动聚类方法有:关联词法、文献--文献相似矩阵法、聚丛法和因子分析法等。自动归类是指计算机系统按照一定的分类标准或分类参考,将被考察对象划归到不同类目的过程。目前常用的自动归类方法有语义分析法、语法分析法和统计法等。
在文献的手工分类过程中,人们往往根据文献的主题内容,以公认的科学分类体系(如《杜威十进分类法》、《国际十进分类法》、《中国图书资料分类法》等),来决定每篇文献的分类号。可以说,文献的分类过程,就是人们根据一定的分类标准给文献以分类号的过程。文献分类的目的是为了便于人们按文献的内在特征,即所属类别进行查找。自动分类与手工分类相比,其类目体系的决定更科学、更灵活,文献的定类更整齐划一。同时,由于劳力的限制,人工分类往往不细、不全(大多一篇文献划归一类),而自动分类则可克服这些缺点,并有很大的潜力。特别是自动聚类与自动分类的结合,将使自动分类体系具有新陈代谢的生命特征,并将为高效的聚类检索奠定基础。
文献的自动分类研究始于20世纪60年代初,最早是由R.M.尼达姆等人进行的。从马罗的第一个自动分类模型发展至今,无论在理论研究上还是实际运用上均取得相当的进展。由于种种原因,特别是中文计算机处理能力的限制,在中国关于自动分类的研究还刚刚开始不久。
由于计算机自动分析主题等研究还没有取得实质性的进展,所以,现在自动分类大部分都建立在题中或文摘中关键词的基础上,它的缺点是不能准确地按文献主题分类。但据有关资料表明,专家的偏爱也常使其分类的质量与普通标引员的分类质量相差无几,而自动分类现有的水平与之也差不多,然而其速度与规定性则是手工分类无法比拟的。因此,它正在受到人们越来越大的重视,成为情报检索中一个重要的研究与发展方向。特别是它与聚类检索的结合,将使其有更强的生命力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条