1) dynamic state transfer
动态状态转换
1.
The concept about dynamic state transfer and static state transfer are al.
传统的状态覆盖方法对电路的数据单元测试不足,而随机测试方法又具有盲目性·在综合2种方法的基础上,给出一种以状态与状态转换覆盖率为评估、以遗传筛选为工具对生成的测试向量进行择优选择的方法·为了指导测试生成,给出了动态状态转换与静态状态转换概念·同时,基于该方法给出一个测试生成工具GRTT·最后,将文中方法实验于ITC99-benchmark电路,并将实验结果与测试生成系统X-Pulling的结果进行比较
2) Status Driving and Diversion
状态驱动转换
3) transforming the movement state
运动状态转换
1.
Second, according to system requirements, advantage of the theory of geometry was taken to give the model of plane capture and the model of transforming the movement state.
然后根据系统需求,利用空间几何的原理得到了二维、三维环境中雷达捕捉飞机的模型和毁伤评估成员中的运动状态转换模型,依据一种新的毁伤评估处理策略建立了飞机的毁伤评估模型,并制定了防空模拟的一般性算法流程。
4) state transition
状态转换
1.
To solve the complex design problem of control program of robots in different applications,the state transition method is proposed.
为了解决不同应用中机器人的控制程序设计问题,提出了基于状态转换的机器人程序设计方法。
2.
Based on analyzing the application and characterization of wireless sensor networks,statement the system energy model of wireless sensor networks from three aspects of the node energy calculate model,node′s energy consume model and state and state transition.
在分析了无线传感器网络的应用和特性的基础上,从节点能量计算模型、节点的能量消耗模型和状态转换模型3个方面论述了无线传感器网络的系统能量模型,通过引入Flag标志和长期睡眠状态机制来防止网络中的某些节点因为过早耗尽能量而死亡,从而实现无线传感器络中节点的能量均衡和网络生存周期的最大化,对无线传感器网络的应用和研究有着深远的意义。
3.
This paper presents a survivability evaluation method for information service systems based on state transition.
本文提出了一个基于状态转换的信息服务系统可生存性评估方法,该方法包括一个系统生存性模型和一个生存性函数的定义。
5) state switching
状态转换
1.
A new method for describing the state switching of power electronic circuits;
一种描述电力电子电路状态转换的新方法
2.
The state switching technique and back-stepping approach is used to design the output feedback controller.
采用状态转换技术和反推方法,设计了只依赖于输出值的输出反馈控制器。
6) State conversion
状态转换
1.
After grammatical rules are defined,a method of the state conversion is founded.
在定义文法的基础上,基于状态转换方法,给出了一种不良信息文本过滤模型。
2.
At first,researching the state conversion of system intrusion,analyzing some famous attacking methods,such as TCP SYN FLOODING,IP FRAGMENT OVERLAP and so on,according to defect of the existing intrusion detection technology,a new intrusion detection model is accomplished,intrusion detection technology based on characteristic information sequence parsing is proposed.
对系统入侵的状态转换进行了研究,分析了常见的黑客攻击方法,包括TCPSYNFLOODING、IP分片攻击等。
补充资料:应力状态和应变状态
构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条