|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
您的位置: 首页 -> 词典 -> 增广线性矩阵不等式
1) dilated linear matrix inequality
增广线性矩阵不等式
1.
The main purpose is to design the systems full and reduced-order robust L_2-L_∞ filtering via dilated linear matrix inequality(DLMI),with the result that less conservativeness is achieved compared with earlier results.
利用该判据,采用增广线性矩阵不等式技术推导了此类系统的全阶和降阶的鲁棒L2-L∞滤波新方法。
2.
Based on the dilated linear matrix inequality(DLMI),the robust L_2-L_∞ performance criterion was derived for polytopic continuous-time uncertain systems and to decouple between Lyapunov matrix and system matrix.
研究了一类具有凸多面体连续不确定系统的鲁棒L_2-L_∞动态输出反馈控制问题;基于增广线性矩阵不等式技术,提出了依赖于参数的凸多面体不确定连续时间系统的鲁棒L_2-L_∞性能新判据,实现了Lyapunov矩阵和系统矩阵解耦。
2) linear matrix inequality
线性矩阵不等式
1.
Active vibration control strategy based on linear matrix inequality for rotor system;
基于线性矩阵不等式的转子系统振动主动控制
2.
Analysis of pinning control strategies based on linear matrix inequality;
基于线性矩阵不等式的牵制控制策略分析
3.
Tracking Control of Nonholonomic Chained-Form System Based on Linear Matrix Inequality
基于线性矩阵不等式的链式系统跟踪控制律设计
3) LMI
线性矩阵不等式
1.
The use of an LMI approach in cooling water temperature control system;
线性矩阵不等式在冷却水温度控制系统中的应用
2.
LMI-Based Robust Optimization Model of Loan Portfolio;
基于线性矩阵不等式的贷款组合鲁棒优化模型
3.
Design of Optimal Robust Excitation Controller Based on LMI;
基于线性矩阵不等式的最优鲁棒励磁调节器设计
4) linear matrix inequality(LMI)
线性矩阵不等式
1.
Using the Lyapunov functional method and the linear matrix inequality(LMI) tech-nique,the global exponential stability of neural networks with time-varying delays is studied.
利用Lyapunov泛函方法和线性矩阵不等式(LMI)技术,讨论了带有可变时延的神经网络的全局指数稳定性。
2.
H2,H∞ and mixed H2/H∞ state feedback control strategies for the rotor system under seismic excitation were developed by linear matrix inequality(LMI) to attenuate the transient vibration of the rotor system under random excitation and make it robust.
为了抑制随机激励作用下转子系统的瞬态振动并使转子系统具有鲁棒性,基于线性矩阵不等式(LMI),为地震激励作用下转子系统的振动主动控制设计了H2、H∞和H2/H∞混合状态反馈控制律。
3.
Based on the linear matrix inequality(LMI) approach,the system fault diagnosis problem can be solved by using the system s robust stability analysis method.
基于线性矩阵不等式(LMI)的方法,将故障检测问题转化为系统鲁棒稳定性的分析问题。
5) Linear Matrix Inequality (LMI)
线性矩阵不等式
1.
By applying Lyapunov functional method, this paper studies the robust Absolute stability of neutral Lurie control systems with time-varying uncertainties and presents delay-dependent sufficient conditions for the robust Absolute stability of the systems in terms of linear matrix inequality (LMI).
应用Lyapunov泛函方法,研究了具有时变结构不确定性的中立型Lurie控制系统的鲁棒绝对稳定性,给出了系统鲁棒绝对稳定的时滞相关充分条件,这些条件用线性矩阵不等式的形式给
2.
By using Lyapunov functional method and linear matrix inequality (LMI) approach, the absolute stability of a general neutral type of Lurie indirect control systems was studied.
利用Lyapunov泛函和线性矩阵不等式方法,研究了一般中立型Lurie间接控制系统的绝对稳定性。
3.
The negative effects of time delay of WAMS on the dynamic performance of the thyristor controlled series capacitor (TCSC) nonlinear controller are investigated and the linear matrix inequality (LMI) theory is proposed to design a TCSC controller not sensitive to communication and measurement time delays.
分析了广域测量系统的通信延迟时间对可控串联电容补偿器(TCSC)非线性控制器稳定特性的影响,基于线性矩阵不等式理论设计了TCSC控制器以提高电力系统对时滞的不敏感性,线性和非线性时域仿真结果验证了所设计的TCSC控制器的有效性。
6) linear matrix inequalities
线性矩阵不等式
1.
H_∞ control for seismic-excited buildings based on linear matrix inequalities(LMI);
基于线性矩阵不等式(LMI)的建筑结构抗震H_∞控制
2.
Taking the H 2 performance of the closed-loop vibration systems as a optimization objective,the design problem is converted into a convex optimization problem with linear matrix inequalities(LMIs) constraints,which is numerically tractable,Finally as an example a state-feedback .
极点约束集是左半复平面上一个由圆形和带状区域构成的凸域 ,以闭环系统的H2 指标为优化目标 ,将该设计问题转化成一个易于计算的线性矩阵不等式 (LMI)约束的凸优化问题求解。
3.
By using eliminated element method,the matrix inequalities are changed into linear matrix inequalities.
采用消元法,将该矩阵不等式转化为一组线性矩阵不等式。
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式) quality (dual Hatnack inequality) Harnack in- 【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o 0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|