1) Buck-Boost Circuit
升降压电路
2) boost and buck cirucit
升压和降压电路
3) Boost/Buck chopper
升/降压斩波电路
1.
This paper analyzes the principle of Boost/Buck chopper,introduces the characteristic of integrated chip SG3525,in addition,this paper analyzes and does experiment with DC pulse width speed control circuit which controlls by SG3525 and implements by Boost/Buck chopper.
文章分析了升/降压斩波电路的工作原理,介绍了集成芯片SG3525的应用特点,并对由SG3525控制,通过升/降压斩波电路来实现的直流脉宽调速电路进行了分析和实验。
4) boost circuit
升压电路
1.
New discharge equipment by using boost circuit;
应用升压电路的蓄电池放电设备
2.
To eliminate a series of problem,such as switching loss,resulting from power converting in electric vehicle(EV),and to overcome the low voltage conversion ratio in traditional boost circuit,a active clamping zero-voltage switch(ZVS) pulse-width modulation(PWM) current-fed half-bridge converter applied in electric vehicle(EV) is proposed.
电动汽车(Electric Vehicle,简称EV)开关电源升压电路的开关动作会带来诸如开关损耗、传统升压电路的升压变换比低等一系列问题。
3.
The system hardware includes switch input circuit,seven segments LED output circuit,heating circuit and boost circuit.
系统硬件包括按钮开关输入电路、七段数码管输出电路、加热电路、升压电路以及波形控制产生电路。
5) Boost voltage increment circuit
Boost升压电路
6) voltage step-down circuit
电压递降电路,降压电路
补充资料:单相交流调压电路
对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。
结构原理 交流调压电路的一般结构如图1a所示。按一定的规律控制交流开关S1的通断,即可控制输出的负载电压u0。按单相交流调压电路的控制方式有周波控制调压、相位控制调压和斩波控制调压。采用前两种控制方式的单相交流调压电路如图1b所示。图1c所示。是斩波控制的单相交流调压电路,图中的双向开关S2是续流开关。
周波控制调压 适用于负载热时间常数较大的电热控制系统。控制图1b所示。中晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。改变导通的周波数和控制周期的周波数之比即可改变输出电压。为了提高输出电压的分辨率,必须增加控制周期的周波数。为了减少对周围通信设备的干扰,晶闸管在电源电压过零时开始导通。在负载容量很大时,开关的通断将引起对电网的冲击,产生由控制周期决定的分数次谐波,这些分数次谐波引起电网电压闪变。这是其缺陷。
相位控制调压 利用控制触发滞后角α的方法,控制输出电压。晶闸管承受正向电压开始到触发点之间的电角度称为触发滞后角α。在有效移相范围内改变触发滞后角,即能改变输出电压。有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。图3是阻性负载时相控方式的交流调压电路的输出电压波形。相控交流调压电路输出电压包含较多的谐波分量,当负载是电动机时,会使电动机产生脉动转矩和附加谐波损耗。另外它还会引起电源电压畸变。为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。
斩波控制调压 使开关在一个电源周期中多次通断,将输入电压切成几个小段,用改变小段的宽度或开关通断的周期来调节输出电压。斩控调压电路输出电压的质量较高,对电源的影响也较小。图4是斩波控制的交流调压电路的输出电压波形。在斩波控制的交流调压电路中,为了在感性负载下提供续流通路,除了串联的双向开关S1外,还须与负载并联一只双向开关S2。当开关 S1导通,S2关断时,输出电压等于输入电压;开关S1关断,S2导通时,输出电压为零。控制开关导通时间与关断时间之比即能控制交流调压器的输出电压。开关 S1、S2动作的频率称斩波频率。斩波频率越高,输出电压中的谐波电压频率越高,滤波较容易。当斩波频率不是输入电源频率的整数倍时,输出电压中会产生分数次谐波。当斩波频率较低时,分数次谐波较大,对负载产生恶劣的影响。将斩波信号与电源电压锁相,可消除分数次谐波。斩波控制的交流调压电路的功率开关元件必须采用功率晶体管或其他自关断元件,所以成本较高。
结构原理 交流调压电路的一般结构如图1a所示。按一定的规律控制交流开关S1的通断,即可控制输出的负载电压u0。按单相交流调压电路的控制方式有周波控制调压、相位控制调压和斩波控制调压。采用前两种控制方式的单相交流调压电路如图1b所示。图1c所示。是斩波控制的单相交流调压电路,图中的双向开关S2是续流开关。
周波控制调压 适用于负载热时间常数较大的电热控制系统。控制图1b所示。中晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。改变导通的周波数和控制周期的周波数之比即可改变输出电压。为了提高输出电压的分辨率,必须增加控制周期的周波数。为了减少对周围通信设备的干扰,晶闸管在电源电压过零时开始导通。在负载容量很大时,开关的通断将引起对电网的冲击,产生由控制周期决定的分数次谐波,这些分数次谐波引起电网电压闪变。这是其缺陷。
相位控制调压 利用控制触发滞后角α的方法,控制输出电压。晶闸管承受正向电压开始到触发点之间的电角度称为触发滞后角α。在有效移相范围内改变触发滞后角,即能改变输出电压。有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。图3是阻性负载时相控方式的交流调压电路的输出电压波形。相控交流调压电路输出电压包含较多的谐波分量,当负载是电动机时,会使电动机产生脉动转矩和附加谐波损耗。另外它还会引起电源电压畸变。为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。
斩波控制调压 使开关在一个电源周期中多次通断,将输入电压切成几个小段,用改变小段的宽度或开关通断的周期来调节输出电压。斩控调压电路输出电压的质量较高,对电源的影响也较小。图4是斩波控制的交流调压电路的输出电压波形。在斩波控制的交流调压电路中,为了在感性负载下提供续流通路,除了串联的双向开关S1外,还须与负载并联一只双向开关S2。当开关 S1导通,S2关断时,输出电压等于输入电压;开关S1关断,S2导通时,输出电压为零。控制开关导通时间与关断时间之比即能控制交流调压器的输出电压。开关 S1、S2动作的频率称斩波频率。斩波频率越高,输出电压中的谐波电压频率越高,滤波较容易。当斩波频率不是输入电源频率的整数倍时,输出电压中会产生分数次谐波。当斩波频率较低时,分数次谐波较大,对负载产生恶劣的影响。将斩波信号与电源电压锁相,可消除分数次谐波。斩波控制的交流调压电路的功率开关元件必须采用功率晶体管或其他自关断元件,所以成本较高。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条