1) fragmentation threshold
分段门限值
1.
The relationship between the throughput performance of WLAN(wireless local area networks) MAC(media access control) protocol and the RTS(request to send) threshold as well as the fragmentation threshold is discussed when packet lengths are randomly distributed.
为更加准确分析WLAN MAC协议性能,讨论了在数据包长随机分布时的系统吞吐量与RTS门限值及分段门限值的关系。
2) Segment threshold
分段门限
3) Threshold value
门限值
1.
Discussion on the detection threshold value of 92417 type bearings;
92417型轴承检测门限值探讨
2.
Research on group signature with threshold value based on elliptic curve;
基于椭圆曲线的带门限值的群签名研究
3.
In most available threshold signature schemes,only one group secret key is shared among a group of signers and the threshold value is fixed.
现有大多数门限签名体制存在一个共同的问题:门限值是固定的,这限制了它们的应用范围。
4) ratio threshold
比值门限
1.
A new denoising method,the ratio threshold method with similar coefficients,is proposed based on wavelet modulus maximum method.
通过对小波模极大值法进行改进,提出了一种新的去噪声方法——比值门限加相似系数法,它既能有效抑制噪声,又能保留UWB信号的奇异性。
5) RTS (request to send) threshold
RTS门限值
6) threshold
[英]['θreʃhəʊld] [美]['θrɛʃhold]
门限值
1.
Density Evolution Method and Threshold Decision for Irregular LDPC Codes;
不规则LDPC码的密度进化方法及其门限值确定
2.
Application of a Duane model in the determination of the reliability threshold of materiel;
Duane模型在确定装备可靠性门限值中的应用
3.
The proper setting of threshold is crucial for the early prediction of the short circuit fault in the low-voltage distributed system when using the method of wavelet decomposition.
当采用小波分解方法对低压配电系统短路故障进行早期检测时,门限值的合理设置对故障检测的可靠性及灵敏度是至关重要的。
补充资料:力学量的可能值和期待值
在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条