1) centralizer
['sentrəlaizə]
中心化子
1.
A Necessary and Sufficient Condition of Matrices Polynomial Representations for Centralizers of Matrices;
矩阵A的中心化子可表成A的方阵多项式的充要条件
2.
A Sufficent condition for Centralizer of a Matrix to be a Commutative Ring;
矩阵的中心化子为交换环的一个充分条件
2) centralizers
中心化子
1.
The centralizers of minimal subgroups and p-solvability of finite groups;
极小子群的中心化子与群的p-可解性
2.
A class map about centralizers
关于中心化子的一类映射
3.
In this paper,we consider some special Abelian subgroups whose centralizersand normalizers satisfy some conditions,so we obtain some sufficient conditions of finite solvable groups and generalize some results that we have known.
利用某些特殊交换子群的中心化子和正规化子满足一定条件,得到了有限群可解的若干充分条件,并推广了若干已知结果。
3) Fuzzy centralizer
Fuzzy中心化子
4) Annihilator of power central value
幂中心化子
5) anti-fuzzy centralizer
反模糊中心化子
1.
Using the~1λ-Threshold,some definitions of the anti-fuzzy subgroups,anti-fuzzy normal subgroups,anti-fuzzy normalize and anti-fuzzy centralizer are introduced.
利用1λ-截集引入了反模糊子群、反模糊正规子群、反模糊正规化子及反模糊中心化子的概念,并讨论了它们的性质。
2.
Using the λ-Threshold,some definitions of the anti-fuzzy subgroups,anti-fuzzy normal subgroups,anti-fuzzy normalize and anti-fuzzy centralizer are introduced.
本文利用λ-截集引入了反模糊子群、反模糊正规子群、反模糊正规化子及反模糊中心化子的概念,并讨论了它们的性质。
3.
Based on the definitions and some properties of the anti-fuzzy subgroups and anti-fuzzy normal subgroups,the definitions of anti-fuzzy normalize,anti-fuzzy centralizer,anti-fuzzy conjugate subgroups are introduced and some properties are discussed.
基于已有反模糊子群及反模糊正规子群的概念及性质,给出了反模糊正规化子,反模糊中心化子,共扼子群的概念并讨论了它们的性质,最后讨论了生成反模糊子群。
6) selfcentralizer subgroup
自中心化子群
1.
A subgroup H of a finite group G is called a selfcentralizer subgroup if CG(H)≤H.
群G的子群H称为G的自中心化子群,若CG(H)≤H。
补充资料:中心化子
中心化子
ccntratizer
中心化子{侧翻自.血巴;味盯p叨.川)叩l 环、群或半群R的子集,由和某集合S三R的所有元素都交换的元素组成;S在R中的中心化子,记为C:(S)·Abel群的自同态的否可约于争(irredudble,‘ub-ring)(即不稳定任何真子群的子环)在该群的所有自同态的环中的中心化子是除环(Sch盯引理(S‘五urlemma)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条