1) the deception of the distance and velocity
速度距离欺骗
2) range-velocity deception jamming
距离速度欺骗干扰
1.
This paper firstly introduces the technology characteristics of pulse Doppler radar,gives out the recognition methods and countermeasures of usual jamming,finally analyzes and discusses the recognition methods of range-velocity deception jamming.
最后,分析和探讨了对距离速度欺骗干扰的识别方法。
3) range deception
距离欺骗
1.
The jamming effectiveness of range deception using shift-frequency jamming are discussed through the proving of mathematical formula and the simulation.
脉冲压缩雷达的大时宽带宽积使其具有较强的抗噪声干扰能力,而脉冲压缩信号的时延和频移间存在着强耦合的致命弱点,使得对其进行距离欺骗干扰容易实现。
4) distance deception
距离欺骗
1.
A FIFO-based distance deception realization of DRFM;
用FIFO实现DRFM距离欺骗的应用与研究
5) deception in distance
距离欺骗
1.
Aiming at the deception in distance of radar s transmitting deceptive jamming, this paper advances a method, based on mode classification, to recognize the object and jamming.
针对雷达转发式欺骗干扰中的距离欺骗,提出了一种基于模式分类来识别目标与干扰的方法。
6) speed deception
速度欺骗
1.
The paper briefly presents the operation principle of a pulse Doppler radar speed tracking circuit and the method in common use for the speed deception jamming and makes a study for the principle and the feasibility of various deceptive jamming through the computer simulation.
简述一种脉冲多普勒雷达速度跟踪电路的工作原理 ,介绍速度欺骗干扰的常用方法。
补充资料:速度-距离关系
1929年哈勃发现星系的退行速度与距离成正比,这是速度与距离之间最简单的(线性的)关系。在天文学上,星系的速度和距离是不能直接测定的,可以直接测定的是星系的红移和视星等(见星等)。哈勃把观测到的红移归因于多普勒效应,从而得到退行速度,并根据星系中造父变星的周光关系定出了星系的距离。假设红移z与距离D之间的关系为:
z=bDα,
(1)式中a、b为常数;并假设所有星系的绝对星等相同,则根据绝对星等与距离之间的定义关系可得:
。
(2) 式中C1为常数,即lgz与视星等m有线性关系。根据大量星系的(lgz,m)观测资料,以lgz和m为坐标轴,可定出直线(2)的斜率。只有当这个斜率为0.2时才对应于红移与距离之间的线性关系。如z较小,则和光速c的乘积cz即为退行速度,因而速度与距离也是线性关系。如 z较大(例如大于0.2),就要以相对论公式来代替经典的多普勒效应公式,这时速度与距离的关系就显得复杂了。1962年霍金斯根据474个星系的红移-视星等图的斜率,得出红移与距离的1.66次方程成正比;如果仅就这474个星系中430个亮于+14等的星系而言,红移则与距离的2.22次方成正比。1975年莱恩等人根据 663个正常星系得出斜率为0.199,根据230个射电星系得出斜率0.194,根据265个类星体得出斜率0.135,这都表明红移与距离之间的关系同线性关系有一定程度的偏离。从罗伯逊-沃尔克度规,作为一级近似,可以得到速度-距离间的线性关系。霍金斯、斯特芬森、维尔茨和陆启铿等许多学者,分别根据不同的宇宙模型得出红移与距离的平方成正比。在西格尔的时间几何宇宙理论中,z=tg2(r/R)(R为宇宙半径),当r很小时,红移也与距离的平方成正比。
沃库勒通过对红移-距离关系是否线性和各向同性的分析,研究了本超星系团的结构。雅哥拉等人则由红移-距离关系的非各向同性论证了非速度红移的存在。
z=bDα,
(1)式中a、b为常数;并假设所有星系的绝对星等相同,则根据绝对星等与距离之间的定义关系可得:
。
(2) 式中C1为常数,即lgz与视星等m有线性关系。根据大量星系的(lgz,m)观测资料,以lgz和m为坐标轴,可定出直线(2)的斜率。只有当这个斜率为0.2时才对应于红移与距离之间的线性关系。如z较小,则和光速c的乘积cz即为退行速度,因而速度与距离也是线性关系。如 z较大(例如大于0.2),就要以相对论公式来代替经典的多普勒效应公式,这时速度与距离的关系就显得复杂了。1962年霍金斯根据474个星系的红移-视星等图的斜率,得出红移与距离的1.66次方程成正比;如果仅就这474个星系中430个亮于+14等的星系而言,红移则与距离的2.22次方成正比。1975年莱恩等人根据 663个正常星系得出斜率为0.199,根据230个射电星系得出斜率0.194,根据265个类星体得出斜率0.135,这都表明红移与距离之间的关系同线性关系有一定程度的偏离。从罗伯逊-沃尔克度规,作为一级近似,可以得到速度-距离间的线性关系。霍金斯、斯特芬森、维尔茨和陆启铿等许多学者,分别根据不同的宇宙模型得出红移与距离的平方成正比。在西格尔的时间几何宇宙理论中,z=tg2(r/R)(R为宇宙半径),当r很小时,红移也与距离的平方成正比。
沃库勒通过对红移-距离关系是否线性和各向同性的分析,研究了本超星系团的结构。雅哥拉等人则由红移-距离关系的非各向同性论证了非速度红移的存在。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条