说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 框架自振周期
1)  period of frame
框架自振周期
2)  natural period of vibration
自振周期
1.
Influence of the vertical loads and eccentricity on the bent frame’s natural period of vibration;
竖向荷载对排架结构自振周期的影响
2.
And then,by using structural mechanics,we analyze and calculate tank horizontal stiffness and natural period of vibration,and stress of lower support columns and tie-rod under the effects of horizontal seismic force and wind .
将球壳和上支柱处理为刚体,球罐质量集中于球心,下支柱处理为结构梁,拉杆处理为只能受拉的绳索(计算中只考虑受拉拉杆),按结构力学分析计算球罐水平刚度和自振周期,以及在水平地震力和风力载荷作用下,下支柱和拉杆的应力(也可考虑基础不均匀沉降球罐整体倾斜的影响)。
3.
A mathematical expression to determine the natural period of vibrations of hanging tower was obtained by solving the equation of the transverse vibration using the analytical model of elastic continuous body and the method of numerical solution.
根据悬挂式塔设备的固定条件与连续条件 ,利用弹性连续体分析模型与数值解法求解振动方程 ,提出了简支条件下悬挂式塔设备自振周期的计算方法。
3)  natural period
自振周期
1.
Study on natural period of homogeneous rock slope and its estimation method
均质岩石边坡自振周期及其估算方法研究
2.
Structural natural periods are important indexes to reflect on absorbed seismic energy, a formula for structural frequency is deducted according to variation principle in this paper, various ap.
结构自振周期是直接反映结构吸收地震能量多少的重要指标 ,本文基于能量变分原理推导了结构频率的计算公式 ,介绍了工程中计算结构自振周期常用的几种近似方法 ,讨论了影响结构自振周期的主要因素。
3.
The natural periods and modes of the CFT arch bridge are calculated by using the subspace iteration method.
以京珠高速公路郑州黄河大桥主桥为研究对象,采用ANSYS有限元程序,建立了下承式钢管混凝土系杆拱桥的空间力学计算模型,利用子空间迭代法计算了该桥梁结构的自振周期和振型,对桥梁的模态特性进行了分析,计算结果可为该桥的设计、施工以及使用阶段的健康检测和维护提供技术参数和依据。
4)  free vibration period
自振周期
1.
Moreover, the effects of the mass and rigidity of the basement on the free vibration period are investigated.
为获得把地下室顶板作为上部结构的嵌固部位计算的确定条件,讨论了带地下室高层结构的动力计算模型,分别对带地下室剪切型、弯曲型、弯剪型及剪弯型房屋的动力性态进行了计算分析,并探讨了地下室质量与刚度对自振周期的影响。
2.
As the free vibration period is smaller than ten times sampling interval the errors are larger (even over two times as larger as the spectrum from the numerical algorithms.
得出的结果表明:自振周期低于10倍采样间隔时,数值法将产生较大的(甚至可达一倍以上)误差。
5)  natural vibration period
自振周期
1.
Comparison analysis of natural vibration period of frame-shear wall structure under different constraint conditions
地下室不同约束条件下框-剪结构自振周期对比分析
2.
From the result of the measurement of the natural vibration period and the vibration type for 65 columns with the self-support of frame, it is founded that the vibration type of this kind column is deferent from that of columns anchored on the ground.
对65台框架塔的自振周期和振型进行实测,发现基本振型与落地塔不同,塔体呈弯曲变形而框架部分呈剪切变形。
3.
The results which take the composite effect into account show that the natural vibration period .
计算结果表明,考虑钢框架的组合作用后,结构整体自振周期变短,基本自振周期降低了13。
6)  self-vibration period
自振周期
1.
In this paper,based on the study of steel roof in some conference exhibition center,the subspace iteration is introduced to calculate self-vibration period and mode.
以某会展中心钢屋盖工程为例,采用子空间迭代法计算其前20阶自振周期和振型,同时描述了其振型特点。
2.
Based on interaction of filling wall and frame structure,the self-vibration period of filling wall and frame structure has been analyzed under horizontal load and the influence extent of filling wall on self-vibration period of frame structure.
以填充墙与框架结构共同作用为机理,通过分析在水平力作用下砖砌体填充墙—框架结构体系的自振周期,探讨填充墙对框架结构自振周期的影响程度及其规律,结果表明填充墙—框架结构体系的自振周期低于纯框架结构,有的甚至超出了设计常用修正值;在工程设计中应考虑填充墙对框架结构自振周期的影响,使框架结构在地震作用下的计算结果更切合实际,以提高结构设计的安全性与经济性。
3.
Based on a practical engineering example,the vibrant equation of unsymmetrical connection structure is discussed through using series-parallel connection particle cluster layer model,the variational rule of structural self-vibration periods is analyzed when the connection position changes in every floors, and the connection directions EL-Centro1940 seismic wave are put in the structure.
结合一个工程实例,采用串并联质点系层模型分析了非对称连体结构的振动方程,讨论了连体位置在各楼层间发生变动时结构自振周期的变化规律,并对该结构体系沿连廊设置方向施加EL-Centro1940地震波,采用动力时程分析方法分析当连接体位置发生变化时该连体结构的抗震性能变化规律,得出了几点有用的结论以供实际工程应用参考。
补充资料:非周期自同构


非周期自同构
aperiodic automoiphism

(即对某个k>O,TKx=x)的全体构成一个零测度集.对这种变换之所以引进这样的特殊名称,是基干以下的事实:在遍历理论‘cI一g()山。l}:。、l\」的某些定理中,具有“太多”周期点的自同构被视为平凡的例外(见「1〕).【补注]周期自同构中的所谓Rokhhn一Halmos引理(Rokhlin一Halm佣lemma)对用周期变换逼近Lebes-即e空间的自同构是重要的(见周期变换通近〔a功下介xiTr以tlo by peri曲c transforlr以tlons》,参见[AI]第75页或[A21第390页.非周期自同构【a伴riedicau权旧10甲hi翎;魄脚脚脚,吠‘臼.明从碑冲栩],侧度空间的 测度空间上满足如下性质的自同构T:T的周期点x
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条