1) rectifying curve
从切曲线
1.
,we know that a curve lies in a plane if its position vector lies in its osculating plane at each point, and lies on a sphere if its position vector lies in its normal plane at each point;In this paper,we mainly discuss the rectifying curves in three dimensional Minkowski space.
本文给出了三维M inkowsk i空间中一种新类型的曲线———从切曲线,它的位置向量总是位于它的从切平面上。
2) quasi-rectifying curves
拟从切曲线
1.
The main purpose of this thesis is to investigate the quasi-rectifying curves inMinkowski space, classify the limit points of complex hyperbolic isometry groupsand compare with the case in real hyperbolic spaceand and discuss the monotonic-ity and logarithmic convexity of a function involving the gamma function.
本文主要研究了Minkowski空间中的拟从切曲线,对复双曲等距群的极限点进行分类,同时与实双曲空间进行了比较,且讨论了有关伽玛函数的单调性与对数凹凸性。
3) rectifying line
从切直线
4) Dependent Curves
从属曲线
5) rectifying developable
从切可展曲面
1.
The rectifying developable of a nonlightlike space curve in Minkowski 3-space;
三维Minkowski空间中非类光曲线的从切可展曲面的奇点分类
2.
In this paper, We give the singularities of rectifying developable in Minkowski 3-space.
本文给出了三维Minkowski空间中非类光曲线的从切可展曲面的奇点分类。
补充资料:从切平面
从切平面
rectifying [dane
从切平面[recti加毛两ne;cnp咖二,.川。。刀oeKoeT‘] 曲线r=r(t)(见线(曲线)(五加(curve)))上给定点A处的Fr己net标架(见Fr毛net三棱形(氏net tJ止曰拍n))中的一个平面,由曲线在这个点的切线(ta叫笋ni】ir屹)t和.lJ法线(bino仃庄d)b张成.从切平面的方程可写成}x一x(A)Y一八助z一:(A)! }x‘(A)y’(A)z‘(A){ },__’‘.-一_‘’_一l=0. 1 1 yz}}zx(1 xy{{ !}y艺}}“x}}X夕}{或 (R一r)r‘[r’,r’‘」=0,这里r(r)二(x(t),夕(。),:(:))是曲线的方程. 八、A,C叨opoa撰【补注】
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条