1) Hybrid basis function
混合基函数
2) Hybrid domain basis function
混合域基函数
1.
An efficient and simple hybrid domain basis function based on power series functions is formed that acts as the sub-domain and entire domain basis function in the process of the EM scattering problems analysis of the wire scaterers,and this function is taken as the basis function and test function with the Galerkin-MOM.
采用伽列金矩量法,对线状散射体的电磁散射问题进行了分析,综合分域基函数和全域基函数的优点,在幂级数函数的基础上,形成了一种简便有效的混合域基函数作为基函数和检验函数,并根据该混合域基函数,对简单形体的线状散射体的雷达散射截面进行了仿真。
2.
By colligating the advantages of both sub-domain basis and entire domain basis,this paper presents a new kind of hybrid domain basis function(HDBF) expressed by power series,which is based on bilinear quadrangle modeling and can efficiently reduce 3-D to 2-D.
本文综合了矩量法中分域基和全域基各自的优点,提出了一种基于幂级数形式的混合域基函数,该混合域基函数基于双线性四边形剖分模型,能对三维矢量有效地实现降维处理,将其用于三维周期性金属目标电磁散射特性的矩量法计算中,结果表明与其它基函数方法相比,该方法具有未知数个数少、通用性强的特点。
3) hybrid local basis
局部混合基函数
1.
The same accuracy can be obtai ned with the hybrid local basis like the traditional spectral element method.
针对切比契夫谱方法,该文首次构造了两类局部混合基函数,据此发展了一种新的谱元素方法:在元素端点采用局部拉格朗日插值基,元素内部采用经调整后的切比契夫多项式。
4) mixed function
混合函数
1.
Quadratic mixed functional uniform B splines with shape parameters;
带形状参数的二次混合函数均匀B-样条
5) blending functions
混合函数
1.
Based on the research of shape control methods of discrete Coons surfaces, the shape control method of continuous Coons surfaces using only blending functions is presented, while taking the first type blended Coons surface as an example.
提出了在固定边界条件下通过改变Coons曲面的混合函数来使曲面变形,并达到预期变形目的的方法,并指出混合函数对Coons曲面形状的影响要受到包括边界曲线在内的边界条件的制约,缺乏必要的边界条件就无法仅凭混合函数来达到所需的变形。
6) blending function
混合函数
1.
A method for achieving the aim of a desired deformation for a curved surface by means of changing the blending function of Coons surface under fixed boundary conditions was put forward.
提出了在固定边界条件下,通过改变Coons曲面的混合函数来使曲面变形,并达到预期变形目的的方法。
补充资料:混合热力学函数
分子式:
CAS号:
性质:把n1mol组分1和n2mol组分2混合形成均相系统(如溶液)时的热力学函数变化。以焓(H)为例:ΔmixH=H混合后-H混合前=(n1H+n2H2)-(n1+n2);其中,H1及H2分别为组分1及组分2的偏摩尔焓,及分别为纯组分1和纯组分2的摩尔焓。Δmix在定压下叫混合热(heat of mixing)。对于由两个纯液态组分形成的理想溶液:ΔmixH=0,ΔmixS=-R[n1lnx1+n21nx2],ΔmixV=0,ΔmixG=RT[n1lnx1+n2lnx2]
CAS号:
性质:把n1mol组分1和n2mol组分2混合形成均相系统(如溶液)时的热力学函数变化。以焓(H)为例:ΔmixH=H混合后-H混合前=(n1H+n2H2)-(n1+n2);其中,H1及H2分别为组分1及组分2的偏摩尔焓,及分别为纯组分1和纯组分2的摩尔焓。Δmix在定压下叫混合热(heat of mixing)。对于由两个纯液态组分形成的理想溶液:ΔmixH=0,ΔmixS=-R[n1lnx1+n21nx2],ΔmixV=0,ΔmixG=RT[n1lnx1+n2lnx2]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条