1) magnetic Fe_3O_4 particles
Fe3O4磁性粒子
2) magnetite nanoparticles
磁性Fe3O4纳米粒子
1.
Magnetic Fe3O4 nanoparticles around 30 nm were prepared using modified chemical co-precipitation,and corresponding thiolated magnetite nanoparticles are also obtained via surface mercaptopropyltriethoxysilane(MPTES) modification.
通过化学共沉淀法制备了粒径约30nm的磁性四氧化三铁(Fe3O4)纳米粒子,并采用3-巯丙基三乙氧基硅烷(MPTES)将Fe3O4纳米粒子表面修饰上巯基(-SH)官能团,获得了表面巯基化的磁性Fe3O4纳米粒子。
2.
Magnetic Fe_3O_4 nanoparticles of 25±5 nm are prepared by modified chemical co-precipitation,and corresponding amino-coated magnetite nanoparticles are also obtained via surface 3-aminopropyltriethyloxy silane(APTES) modification.
采用化学共沉淀法制备了约25±5 nm磁性四氧化三铁(Fe3O4)纳米粒子,并采用3-氨丙基三乙氧基硅烷(APTES)将Fe3O4纳米粒子表面修饰上氨基(-NH2)官能团,获得了表面氨基化的磁性Fe3O4纳米粒子。
3) Fe_3O_4 magnetic colloidal particles
磁性Fe3O4胶体粒子
4) Fe_3O_4 magnetic nanoparticles
Fe3O4磁性纳米粒子
1.
Fe_3O_4 magnetic nanoparticles have been widely used in biomedical applications such as magnetic resonance imaging contrast reagent,tissue repair,immunoassay,hyperthermia,drug delivery and cell separation,etc.
首先通过化学处理在Fe3O4磁性纳米粒子表面引入Si—H键,然后通过选择性的硅氢加成反应制备了一个端基带溴的磁性引发剂,并利用原子转移自由基聚合(ATRP)技术,在该磁性引发剂表面接枝了聚丙烯酰胺高分子,该聚丙烯酰胺高分子展现出分子量高度可控性和窄的分子量分布。
2.
Fe_3O_4 magnetic nanoparticles with mean diameter of about 20 nm were first prepared by a precipitation method with ferric chloride as starting material,which was partially reduced to ferrous salts by Na_2SO_3 before alkalinizing with ammonia.
通过硅烷偶联剂与Fe3O4磁性纳米粒子偶合在其表面引入C C端基,进一步与N-乙烯基吡咯烷酮(NVP)加成聚合制备含端羟基PVP包裹的磁体,再引发丙交酯(LA)开环聚合制得PVP-b-PLA修饰的Fe3O4纳米粒子。
5) Fe3O4 magnetic particle
Fe3O4磁粒子
1.
The results indicate that the Fe3O4 magnetic particles produced with ultrasonic technology are better than those without ultrasonic technology in the process of co-.
为制备磁粒子足够细小、均匀且稳定的磁性液体,将超声波技术引入Fe3O4磁粒子制备过程中,研究了化学共沉淀法制备Fe3O4磁粒子的不同阶段超声波功率对颗粒大小及磁性能的影响。
6) Fe3O4 magnetic particles
磁性Fe3O4颗粒
补充资料:Fe-C-O和Fe-H-O系平衡图
铁及其氧化物与CO-CO2或 H2-H2O 混合气体达到平衡时的气相组成与温度的关系图(图1)。它是由实验测得的数据绘制的,是冶金过程物理化学常用的一种优势区图。图中三条线分别代表下列三个反应的平衡气相组成:
570℃以下:Fe3O4+4CO3Fe+4CO2 (1)
570℃以上:Fe3O4+CO3FeO+CO2 (2)
FeO+COFe+CO2 (3)
3Fe2O3+CO─→2Fe3O4+CO2反应达平衡时的一氧化碳分压值太小,几乎与横坐标重合,图中未标出。如果实际气相组成pco/(pco+pco2)高于平衡组成,则反应将向右进行,此时反应式等号右边的固相是稳定的,左边的固相不稳定。图中每条线上方的区域就是该反应式右边固体的稳定存在区。这三条线将整个图划分为三个区域,即Fe、FeO、Fe3O4的稳定存在区。三条线交点是四相(Fe、FeO、Fe3O4及气相)共存点(见相图)。
在钢铁冶炼过程中,常利用此图来确定在给定温度和气相组成条件下能够稳定存在的固相。此图还明确表明铁的各级氧化物是逐级转化的(见Fe-O 状态图)。
由图1可见,在虚线(Fe-H-O平衡)与实线(Fe-C-O平衡)交点温度(820℃)以上,H2比CO具有更强的还原能力;在820℃以下,则正相反。
CO对铁还有渗碳作用。当气体中的比值pco/(pco+pCO2)超过反应(4)的平衡组成时,会发生铁的渗碳反应:
2CO(气)─→CO2(气)+[C] (4)
[C]表示溶解于铁中的碳。图2绘出了一系列 [C]含量下渗碳反应达到平衡时的气相组成与温度的关系曲线。此图直接示出在给定温度和[C]含量的情况下,气相对铁是渗碳还是脱碳。这类问题在钢的热处理时经常遇到。FeO是非化学计量化合物(见Fe-O 状态图),其中氧含量与其平衡气相组成的关系也在图2中绘出。
3Fe2O3+CO─→2Fe3O4+CO2反应达平衡时的一氧化碳分压值太小,几乎与横坐标重合,图中未标出。如果实际气相组成pco/(pco+pco2)高于平衡组成,则反应将向右进行,此时反应式等号右边的固相是稳定的,左边的固相不稳定。图中每条线上方的区域就是该反应式右边固体的稳定存在区。这三条线将整个图划分为三个区域,即Fe、FeO、Fe3O4的稳定存在区。三条线交点是四相(Fe、FeO、Fe3O4及气相)共存点(见相图)。
在钢铁冶炼过程中,常利用此图来确定在给定温度和气相组成条件下能够稳定存在的固相。此图还明确表明铁的各级氧化物是逐级转化的(见Fe-O 状态图)。
由图1可见,在虚线(Fe-H-O平衡)与实线(Fe-C-O平衡)交点温度(820℃)以上,H2比CO具有更强的还原能力;在820℃以下,则正相反。
CO对铁还有渗碳作用。当气体中的比值pco/(pco+pCO2)超过反应(4)的平衡组成时,会发生铁的渗碳反应:
[C]表示溶解于铁中的碳。图2绘出了一系列 [C]含量下渗碳反应达到平衡时的气相组成与温度的关系曲线。此图直接示出在给定温度和[C]含量的情况下,气相对铁是渗碳还是脱碳。这类问题在钢的热处理时经常遇到。FeO是非化学计量化合物(见Fe-O 状态图),其中氧含量与其平衡气相组成的关系也在图2中绘出。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条