1) asymptotic representation
渐近表示
1.
On asymptotic representation of numerical solutions of the nonlinear order differential equations and its application;
非线性常微分方程数值解的渐近表示以及应用
2.
In this paper, asymptotic representation of solutions of linear functional differential equations in R n is investigated with an uniform stability and convergence theorem for a special type of functional differential equations, and the same asymptotic integration formula same as that in is obtained under weaker conditions.
本文利用一类特殊方程的一致稳定性与收敛性定理研究Rn中线性泛函微分方程解的渐近表示,在较弱的条件下得到了与文[1]同样的渐近积分公式。
2) asymptotic expressions
渐近表示
1.
In this paper, a robust mean absolute deviation M(α)(α∈S p-1 ) and its asymptotic expressions are obtained.
文中对一类稳健的平均绝对离差M(α)进行了讨论,得到了它的渐近表示式,并由此推出M(α)关于α一致地渐近分布为高斯过程的上界。
2.
Two kinds of robust PP mean absolute deviations M_1(a),M_2(a),(a∈ S~(p-1))and their asymptotic expressions are obtained,furthemore,the asymptotic distributions of M_1(a) and M_2(a) uniform for a∈S~(p-1) are derived which are supremums of the Gauss processes on S~(p-1).
对两类较稳健的PP平均绝对离差M_1(a),M_2(a),(a∈S~(p-1))进行了讨论,获得了它们的渐近表示式,并由此得到M_1(a),M_2(a)关于a一致地渐近分布为高斯过程的上界。
3) asymptotic representation of Debye
德拜渐近表示
4) large time asymp-totics
长时间渐近表示
5) asymptotic representation
渐近表达
1.
The expressive problem of higher order asymptotic representation for modified Szzsz operators is studied, and a equality formula of higher older asymptotic representation is obtained, and the direst, in verse theorems of simultaneous approximation are given.
研究修正的Szsi算子的高阶渐近表达问题,得到高阶渐近表达等式,同时给出该算子同时逼近的正、逆定理。
6) asymptotic expression
渐近表达式
1.
In order to study critical behaviour of D vector model by using Ginzherg Landau theory based on cumulant expansion,both the free energy and moments of single site and their asymptotic expressions for D vector model up to 6th order are derived.
为使基于累积量展开的京茨堡-朗道理论(GLC)能更精确地研究D矢量模型的临界特性,导出了它的单点自由能、单点矩及其直至六级近似的小宗量渐近表达
补充资料:渐近表示
渐近表示
asymptotic representation
渐近表示【as州ptotic repr魄nta6on;~,~e11衅口厂l习压旧翻.e} 同渐近公式(asymptotic formula)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条