1) moving targets
小映射
1.
Based on the study of the relation between meromorphic mapping and moving targets,a new truncated second main theorem is proved for meromorphic mapping in several complex variables with moving targets.
通过对亚纯映射与小映射之间关系的研究,给出了一个涉及小映射的亚纯映射精简密指量形式的第二基本定理,并由此得到相应的亚纯映射唯一性定理。
2) cliquish map
小集映射
3) small contraction
小收缩映射
1.
On flip of small contraction of projective varieties;
关于代数簇的小收缩映射的翻转
4) narrow angle mapping
小角度映射
5) mother wavelet mapper operator
母小波映射算子
6) directed minimal maps
定向极小映射
1.
By the theory of completely distributive lattices,directed minimal subsets in complete lattices and directed minimal maps in continuous lattices are defined.
仿照完全分配格中的做法,定义了完备格上的定向极小集和连续格上的定向极小映射,从而得到了连续格的定向极小集刻画,并研究了它们的一些性质。
补充资料:Poincaré回归映射
Poincaré回归映射
Poincare retuni map
关于所有半轨都与V相交的情况可见【A81. 上面提到的“琴真’担字回(‘cyl访drical’口姚esp解e)定义如下.考虑与(·)相关联的自治系统 又二.j(y,x),少二1.(Al)把f的定义域中每一点(y,x)均与(y+T,x)视为相同,注意到后者形如Rx刀的一点,这里D是R”的一个子集(当(*)定义于R”上时).这时(AI)定义“柱”I:xD上的一动力系统,I:是闭区间10,:j并视其两个端点为同一点,即为一圆.上面考虑的映射T:x卜,沪(:,x)就是I,xD上的动力系统(AI)到超曲面{0}xD中的Poinc沉映射. 关于整体截面的存在性,例如可见【A21 W.2节,以及【A3].在更一般的变换群的框架中可以讨论“擎侠匆泞’(蜘回slices),例如见【A,l·至于不可微动力系统局部截面的存在性,可见fA4」Vl.2节.在叶状结构理论中可以找到Poinca记回归映射在(叶的)和乐群之生成元中的推广.例如可见【A6) 关于Poinc乏晚回归映射在微分方程理论中的应用(周期轨道附近的性态),例如可见【AS](所谓“Fk现uet理论”(RO明ett】切ry)).Poi附悦回归映射fpo泳习戊r比川llnap;【.oe月e加。翎,,o、。丘p撇n“e」后继映射(suce巴sor服pp雌) 一个光滑的或至少是连续的流(连续时间动力系统(flow(cont访uous tilned”lanllc:115”tem))S={S,}和一个横截于它的超曲面V的,即是一个将点u〔V映到始于。的流之正半轨道一首次再度与F相交之点的映射T(它只对于那些有再度相交点存在的v点有定义).(超曲面V称为截面(sectlon),相交面(in-tersectillg sul毛‘e)或横截面(tmnsversal)).若dimV二l(从而{S。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条