说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Euler形式
1)  Euler form
Euler形式
1.
Studies an integrable question of Pfaff constraint,utilizing the integrable sufficient condition of Pfaff constraint,giving an integrable sufficient conditions of the Euler form as Pfaff constraint-proposition 1,and points out that the inverse-proposition of proposition 1 in general does not hold as proposition 2.
利用Pfaff约束可积的充分条件,给出Pfaff约束可积的Euler形式的充分条件———命题1。
2)  euler equation
Euler公式
3)  implicit Euler method
隐式Euler法
1.
Nonlinear stability of implicit Euler method for MDDEs;
MDDEs隐式Euler法的非线性稳定性
2.
This paper deals with the numerical stability of implicit Euler method for nonlinear pantograph equation in which constant stepsize and variable stepsize are applied.
讨论非线性比例延迟微分方程隐式Euler法的数值稳定性,其中步长采用定步长和变步长两种方式。
3.
The explicit Euler method,the implicit Euler method and the Crank-Nicolson scheme are used for the time discretization respectively.
研制了分别用显式Euler法、隐式Euler法、Crank-Nicolson格式(梯形方法)求解带第一、第二及混合边值条件的抛物问题的应用软件,通过求解若干抛物问题对该软件作了测试,获得了预期的数值结果,讨论了时间和空间步长的变化对格式计算结果的影响,得到了三种方法的稳定性、收敛精度和计算量。
4)  Euler-Savary equation
Euler-Savary公式
5)  Euler inequality
Euler不等式
1.
Some geometric inequalities concerning the circumradius and inradius of a simplex are established,which is the further improvement of Euler inequality in the space En.
应用几何不等式理论与解析方法,研究了n维欧氏空间En中n维单形外接球半径与内切球半径之间的关系,建立了涉及单形外接球半径与内切球半径的一些几何不等式,进一步改进了著名的Euler不等式。
2.
These inequalities improve the well-kown n-dimensional Euler inequality.
应用几何不等式理论与解析方法,研究了单形外接球半径与内切球半径之间的关系,建立了涉及单形外接球半径与内切球半径的一些几何不等式,从而加强了著名的n维Euler不等式。
6)  Euler polynomial
Euler多项式
1.
In this paper,the Akiyama-Tanigawa algorithm for Bernoulli polynomials and Euler polynomials was investigated,a new kind of closed formulae for Bernoulli polynomials and Euler polynomials are given via Stirling numbers.
研究Bernoulli多项式和Euler多项式的Akiyama-Tanigawa算法,利用Stirling数分别给出它们的一类新的封闭计算公式。
2.
The relation between the Euler polynomials of higher order and Euler polynomials are presented,and the results of ZHANG Zhi zheng and HU Ting feng have been extended.
讨论了高阶Euler多项式和Euler多项式的关系,推广了张之正、胡廷锋的结
3.
By using the method of generation,the paper researches on the relationships among integral polynomial of Bernoulli s polynomials and Genocchi polynomials,as well as Euler polynomials,obtaing some beautiful identities.
利用发生函数,研究了Bernoulli积分多项式和Genocchi多项式,Euler多项式之间的关系,并得到了几个漂亮的恒等式。
补充资料:内部形式与外部形式
      标示形式自身相互区别的一对哲学范畴,即表现事物内容的两种不同的方式。内部形式是内容的内在组织结构,内容诸要素间的本质联系;外部形式是内容的外在的非本质的联系方式,是使不同内容的事物相互区别的外部形态、外部表现。内部形式和内容不可分割,和内容一起表现着事物的本质方面,其发展变化直接影响着内容的发展变化。它包含在内容自身之中,在一定意义上是内容的组成部分、因素和环节,和内容是直接统一的。外部形式同事物的现象相联系,是内容的外观,它以外在的表现形式对内容发生影响。外部形式同内容的联系不具有内部形式那样的内在性、直接性,它和内容不是直接统一的。
  
  内部形式和外部形式的区分对于文学艺术具有重要意义。文学艺术内容的内部结构性、组织性,形象联系的合理性、协调性和完整性等,直接表现着文学艺术作品的思想主题,它们是和文学艺术内容直接统一的内部形式。在此意义上,内部形式也就是内容的组成部分。文学艺术作品的内容又要通过物质材料,通过文学艺术思想的物化形态表现出来,以供观赏。物质材料等文学艺术思想的物化形态,构成文学艺术的外部形式。对于文学艺术来说,其外部形式具有重要的作用。事物的外部形式具有不同的层次,其中,有些同事物的内容存在着一定联系,有些则同事物的内容并不直接相关。
  
  唯物辩证法首先重视事物的内部形式,认为内部形式和内容一起共同表现着事物的本质,它对于理解和把握事物的发展具有重要意义。与此同时,也注意事物的外部形式,认为它是影响事物发展的一个因素。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条