1) sum of the squares of the degree
度平方和
2) gray's deviation square sum
灰度残差平方和
3) sum of magnitude difference square function
幅度差平方和函数
1.
Real-time pitch tracking based on sum of magnitude difference square function;
基于幅度差平方和函数的基音周期提取算法
4) the bound of the sum of the squares of the degrees in a graph
图中度平方和的界
5) sum of squares
平方和
1.
We prove that if 9 divides k or k is divisible by a prime q (q= ± 5 (mod 12)), then the sum of squares of any k consecutive positive integers cannot be a nth power of prime (n ∈ N).
对给定的正整数k,证明了:当9|k或q|k(q=±5(mod 12)是一个素数)时,任何k个连续正整数的平方和不是素数的n次幂(n∈N);当q|k(q=±1(mod 12)是一个素数)时,可定出模q的两个剩余类,而不属于其中任何一个剩余类的每一个非负整数x所确定的k个连续正整数的平方和(x+1)2+(x+2)2+…+(x+k)2不是素数的n次幂(n∈N)。
2.
In this paper, we prove that the Diuphantion equation(l) has not positive integers solution, or the sum of squares of AT consecutive positive integers is not a prime or a prime power, where K - 4k, 9k, qk (q=±5(mod 12), q is a prime).
指出了文献[4]中证明过程的错误,得到了比文[4]中更一般的结论,当K=4k,9k,qk(q≡±5(mod 12)为素数)时,Diuphantion方程(1)无正整数解,即K个连续正整数的平方和不是素数或素数方幂。
3.
In this paper we proved that the sum of squares of 4k consecutive positive integers is not a prime or a prime power.
证明了 :4 k( k为正整数 )个连续正整数的平方和不是素数或素数方
6) square sum
平方和
1.
The properties of two number square sum problem;
两数平方和问题的性质探讨
2.
And from this paper we can know that prime number can express two integer square sums and the uniqueness expression.
仅用整除及同余知识 ,从另一种角度对不定方程x2 +y2 =m的整数解问题详细进行了讨论及推证 ,并得到了形如 4n + 1质数可表示为两个整数平方和及其表法唯一的问题。
3.
In this paper, with Baker s method,we obtain a necessary and sufficient condition for there exist infinitely many sets of m+1 consecutive positive integers such that the square sums of the integers are powers.
对于正整数m,本文运用Baker方法给出了m+1个连续正整数之平方和中存在无限多个完全方幂的充要条件。
补充资料:残差平方和
分子式:
CAS号:
性质:在回归分析中,实际测定值与按回归线预计的值之差,称为残差。回归线各实验点残差之平方的加和,称为残差平方和。
CAS号:
性质:在回归分析中,实际测定值与按回归线预计的值之差,称为残差。回归线各实验点残差之平方的加和,称为残差平方和。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条