1) ratio-dependent predator-prey model
比率依赖型捕食模型
2) prey-dependent model
食饵依赖模型
3) ratio-dependent
比率型捕食系统
4) semi-ratio-dependent predator-prey system
半比率依赖捕食-食饵系统
1.
Existence of periodic solution for a semi-ratio-dependent predator-prey system with Holling IV functional response;
一个带有Holling IV功能反应的半比率依赖捕食-食饵系统周期解的存在性
6) Ratio-dependent predator-prey system
比率型捕食者-食饵系统
补充资料:捕食者—猎物模型
捕食者—猎物模型
predator-prey models
捕食者一猎物模型(predator一prey mo-dels)又称寄生物一寄主模型,是表达捕食者一猎物系统内种群数量变化动态的数学方程。可为昆虫种群动态和害虫生物防治提供数量信息。影响捕食者一猎物种群动态的因素复杂多样,如捕食者有寻找效应、选择效应、扩散聚集效应、饥饱水平、种内和种间相互干扰效应等;猎物有逃避作用、饱和作用等:捕食者和猎物种群各自包含有对环境因素的适应,种内种间竞争作用,以及种群自身的调节作用等。因此,相应的数学模型也多种多样。如对世代重叠的昆虫类型常采用微分方程表述其连续状态,最早由美国洛特卡(A.J.Lotka,1925)、沃特拉(U.Volterra,1926)提出:如对世代不重叠的昆虫类型多采用差分方程表达其离散状态,最早由英国尼可尔森(A.J.Nieholson,1933)提出。 微分方程主要的有以下6种: 洛特卡一沃特拉模型由洛特卡(A.J. Lotka,2925)和沃特拉(U.Uolterra,1926)提出的经典模型,方程为:=,W‘a入尹-一bP十刀入尹dN一dtdP一dt式中N、尸为猎物、捕食者种群;r为猎物增长率;b为捕食者单独存在时的增长率;a、刀分别为攻击、防御系数;护汉项表猎物(N)呈指数增长,“功能反应”项(a入i尸)表捕食者对猎物种群影响的效晶捕食者种群(尸)具有内察死亡率项(一bP),和取决于猎物密度的增长率项(刀入沪),此项即“数值反应”项。这一模型揭示了捕食者一猎物系统有产生周期性振荡的倾向,周期取决于该模型的参数(a、口、r、b),而振幅大小取决于捕食者和猎物的初始密度(图la)。如将上图的结果以捕食者密度作纵坐标,猎物密度作横坐标,按相反,猎物数量充足时,尸/N项则小,对捕食者的增长限制就很小。 霍林一坦纳模型由霍林(C.5.Holling,1973)提出,杆1纳(J .T.Tanner,1975)修订过的方程。考虑了猎物种群自身的干扰,猎物对捕食者的逃避能力。即猎物不会在密度很低时绝灭,以及当猎物密度很高时,捕食者有一捕食的上限。二(rl一blN一 W尸__二二,-二万)jV口十刀 尸_=(伪一CZ石下)尸 ZV业dt丝dt式中W表示捕食上限,D表示猎物对捕食者的逃避能力,当猎物密度很大时,H聊D+N项作用很小。对猎物种群的主要作用因素是一blN项,即自身密度制约的影响。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条