1)  cogging force
齿槽定位力
1.
Researches on reducing cogging force is indispensable for improving the performance of permanent magnet brushless DC linear motor(PMBLDCLM).
为提高永磁无刷直流直线电机的性能,必须研究减小其齿槽定位力(齿槽力)的技术措施。
2)  cogging torque
齿槽定位力矩
1.
The cogging torque of permanent magnet synchronous motor is harmful to driving systems.
在永磁同步电机齿槽定位力矩特点分析的基础上,提出一种在电流中注入谐波对定位力矩进行补偿的方法,抑制了由于定位力矩引起的速度波动,从而减小了对电机低速性能的影响。
2.
The magnet torque and cogging torque equations are also developed for threephase permanent magnet inductor synchronous motor(PMISM).
实验及分析表明,采用等效磁路和实际测量相结合的方法,可以预测永磁感应子式无刷直流电动机的电磁转矩和齿槽定位力矩特性,为电机的转矩控制提供理论依据。
3)  tongue-grooved section
齿槽
1.
Based on the studies made in Reference ,this paper presents some assumptions to understand equations for simplifying calculations of load on tongue-grooved section joints of high piled wharfs under transversely concentrated horizontal force.
在参考文献[1]的研究基础上,提出一些假定,推导出高桩码头在横向集中水平力作用下齿槽受力简化计算所需用的公式。
4)  gullet thickness
齿槽宽
5)  alveolar cleft
齿槽突裂
1.
Objective:To establish an animal model for repair of alveolar cleft with distraction osteogenesis by tooth and MIA-borne intraoral distractor.
目的:建立牙、微型种植体支抗联合支抗牵张成骨治疗齿槽突裂的动物模型,评估其治疗效果。
6)  slot effect
齿槽效应
1.
Analysis of the slot effect of high speed brushless PM motors based on numerical conformal transformation;
基于数值保角变换的高速永磁无刷电机齿槽效应的分析
2.
For reducing detent force of permanent magnet linear synchronous motors(PMLSM) resulting from slot effect and end effect.
为了最小化由边端效应与齿槽效应引起的永磁直线同步电机(PMLSM)的推力波动,提出了一种数理分析相结合的优化设计方法。
3.
The mathematical model of slot effect is built based on experimental data.
齿槽效应是高速磁浮列车悬浮控制系统悬浮间隙检测面临的一个特殊的问题,它直接影响悬浮控制系统的性能。
参考词条
补充资料:槽面—多齿极对的磁场特性


槽面—多齿极对的磁场特性
magnetic field characteristics of pole pair to grooved planepole teeth

  eaomian一duoehijidui de ciChang tex,ng槽面一多齿极对的磁场特性(magnetic fieldeharaeteristies of pole pair to grooved plane-poly teeth)槽面极与多个尖齿极或矩齿极组成磁极对的磁场分布规律。此种磁极对的特点是两极间整个空间磁场的不均匀性较大,因而可以提高分选效率。它们多用于辊式强磁场磁选机。槽面一多齿极对的结构参数主要是齿极形状、槽面极的曲率半径、极距、齿距和槽距等。槽面极适宜的曲率半径;、0.5,。槽面一多尖齿极对如图1所示。它类似多个双曲线形极(图2)组成的磁极对。此种磁极对沿齿极对称面上的磁感应强度可用双曲线形极对的公式近似计算。由于槽面一多齿极对的磁感应强度比单齿的双曲线形极对低,故在计算磁场力时应引入。.7一。.8的修正系数,双曲线形极对的磁感应强度为 卜州_ 丁一-一l 1~吮~一 图1槽面一多尖齿极对 牛 图2双曲线形极对。,一(。·7一。·8)。。,·in鲁〔,2一(,。。·鲁一。)2〕一式中K一鲁一鲁,,:和风为两个双曲线形极的渐近线之间的夹角,度。磁场梯度(grad召,)为赞一、。。,(,一鲁一、)〔,2一(,一鲁一、)2〕一’·5 夕2 s,n万磁场力为(。grad。),一(。.:一0.8)、。:,ZsinZ鲁(,c。,鲁一殉)、一。-一一一y、一’--一--一.--一2一-一2一丫 几~、?,一2[12一(zeos导一犬乡)“〕一2‘一、--一2一,习 槽面一多矩齿极对如图3所示。其沿齿极对称面上的磁感应强度可用经验公式计算: 下芬协扎 土~弩~ 图3槽面一多矩齿极对 召,、召。(z一下件万y) 一少一”、一1+ml挤 B。一B盯radB IBJB- Bn B!一二‘升气 一’1+ml式中B。为齿极端处(y一0)的磁感应强度,T;l为极距,cm;B,为槽面极凹底处(y一l)的磁感应强度,T;m为系数;当极距l为0.5,、0.75、和1.0,时,m分别为1.09、0.74和0.45,齿距:=sem。其磁场梯度gradB,为 擎一拼卫一Bn d少1+ml~U磁场力为 (BgradB,,一B若气带瑞)(‘一湍,, (孙仲元)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。