1) film cooling effectiveness
气膜冷却效率
1.
Experimental investigation on film cooling effectiveness of multi-hole at longitudinal wavy surface
多孔纵向波纹表面气膜冷却效率实验研究
2.
Calculation results show that rotation causes film cooling effectiveness on the pressure surface to drop—the quicker the rotation the low.
采用数值模拟的方法对旋转涡轮叶片表面的气膜冷却效率进行了研究,同时对涡轮静叶栅和动叶片在不同的旋转速度下分别进行计算,分析不同转速、吹风比和冷却气流喷射角度对气膜冷却的影响。
3.
The B-L turbulent model is employed to compute film cooling effectiveness of flat, concave and convex surfaces.
采用B-L紊流模型对平板、凹面和凸面上气膜冷却效率进行了数值模拟,对不同吹风比(0。
2) Film cooling efficiency
气膜冷却效率
1.
A three-dimensional steady and uncompressible N-S equation was discretized by volume-control method to simulate the effects of hole\'s geometry shapes on film cooling efficiency of turbine blade in combining with non-structural mesh and two-layer k-ε turbulence model,with blowing ratio of 0.
2的情况下,利用非结构化网格及两层k-ε湍流模型,对气膜孔几何形状对涡轮叶片气膜冷却效率的影响进行了数值模拟,得到气膜孔附近的流场分布。
3) film cooling
气膜冷却
1.
Numerical study of film cooling of a flat plate at different blowing ratios;
不同吹风比下平板气膜冷却数值模拟
2.
Numerical investigation on the effect of different transverse trench configurations on film cooling effectiveness;
不同横槽结构对气膜冷却效率影响的数值研究
3.
Investigation of supersonic film cooling in flat and convex channels;
直通道和弯曲通道中超声速气膜冷却研究
4) Film-cooling
气膜冷却
1.
Numerical Simulation of Film-cooling with Different Cone-shaped Jet Holes;
不同扇形角度气膜冷却的数值模拟
2.
Influence of curvature on film-cooling on turbine blade surface
圆形孔排的气膜冷却曲率实验研究
3.
2-D,time accurate numerical simulations of the unsteady effects of upstream shocks on film-cooling in a 1+1/2 turbine stage were performed.
利用数值计算的方法研究了非定常激波对下游涡轮叶片表面气膜冷却的影响。
5) cooling efficiency
冷却效率
1.
Influence of aerodynamic parameter on the temperature gradient and cooling efficiency for effusion wall cooling method;
多斜孔冷却方式气动参数对壁温梯度和冷却效率的影响
2.
Experimental study of cooling efficiency of film cooling with tab;
突片作用下气膜冷却效率的试验研究
3.
Investigation of the wall temperature distribution and cooling efficiency for impingement/effusion cooling scheme;
冲击/发散冷却壁温分布和冷却效率研究
6) Cooling effectiveness
冷却效率
1.
Study of overall cooling effectiveness of discrete holes with different angles to concave wall;
弯曲多孔壁不同倾斜角气膜孔整体气膜冷却效率研究
2.
Detailed heat transfer and full coverage film cooling measurements were conducted on the turbine blade surface,primarily research the effect of different reynolds number and mass flow ratio on local heat transfer and film cooling effectiveness.
对全气膜覆盖的涡轮导向叶片的表面进行了详细的传热实验研究,重点研究了不同质流比和不同雷诺数对当地气膜冷却效率和换热系数的影响。
3.
To investigate the influence of the hole shape on the film cooling effectiveness of the maze composition structure of a combustor,a numerical study on the distribution of its wall temperature and cooling effectiveness was performed when the outside wall holes were dust-pan shaped holes,cone shaped holes and round holes.
为了获得开孔形状对燃烧室新型迷宫复合冷却结构冷却效率的影响规律,采用数值模拟方法研究迷宫冷却结构的外侧壁冷却孔分别为簸箕形孔、圆锥形孔和圆柱形孔时内外壁温的分布情况,获得其壁温及冷却效率的分布规律,并在迷宫冷却结构三层壁的热侧面对它们的冷却效率进行对比。
补充资料:扩散膜分离效率
分子式:
CAS号:
性质:同位素混合物通过扩散分离膜时,在不变的出口丰度下,膜的实际浓缩与理想浓缩的比值。 Z=(C+-C0)/(C+-C0*) C+为膜的出口丰度,C0为实际膜前丰度,C0*为理想膜前丰度。膜的分离效率Z总是小于1。原因是:(1)膜后向膜前的反扩散;(2)由于轻重分子相互碰撞而拉平两种分子平均速度差异的动量迁移效应;(3)部分孔隙中的黏滞流;(4)吸附迁移效应。
CAS号:
性质:同位素混合物通过扩散分离膜时,在不变的出口丰度下,膜的实际浓缩与理想浓缩的比值。 Z=(C+-C0)/(C+-C0*) C+为膜的出口丰度,C0为实际膜前丰度,C0*为理想膜前丰度。膜的分离效率Z总是小于1。原因是:(1)膜后向膜前的反扩散;(2)由于轻重分子相互碰撞而拉平两种分子平均速度差异的动量迁移效应;(3)部分孔隙中的黏滞流;(4)吸附迁移效应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条