1) AMGEKF(Adaptive Modified Gain Extended Kalman Filter)
自适应修正增益的扩展卡尔曼滤波
2) MGEKF
修正增益的扩展卡尔曼滤波
1.
By establishing maneuvering target model and measurement formula,the location of maneuvering target is practicable with the MGEKF algorithms.
在建立目标机动模型与测量方程的基础上,运用修正增益的扩展卡尔曼滤波(MGEKF)算法,实现对机动目标进行定位与跟踪。
3) MGEKF
修正增益扩展卡尔曼滤波
1.
The Modified Gain EKF(MGEKF)algorithm for passive localization of maneuvering target by single station is discussed.
在建立目标机动模型与测量方程的基础上,运用修正增益扩展卡尔曼滤波(MGEKF)算法,实现对机动目标进行定位与跟踪。
2.
The paper presents a single observer passive location algorithm which is based on azimuth and elevation angle and TDOA measurement and adds the changing rates of azimuth angle,meanwhile,introduces a filtering algorithm which is good for nonlinear system,modified gain extended Kalman filter(MGEKF) algorithm.
同时引入一种对非线性系统较好的滤波算法——修正增益扩展卡尔曼滤波(MGEKF)算法,与推广卡尔曼滤波器(EKF)相比,MGEKF能更好地解决量测模型非线性问题,滤波性能更好。
3.
The modified gain EKF(MGEKF)algorithm for passive localization of maneuvering target by single station is discussed.
在建立目标机动模型与测量方程的基础上,运用修正增益扩展卡尔曼滤波(MGEKF)算法,实现对机动目标进行定位与跟踪,讨论了其定位原理与算法,计算机仿真验证了该方法的正确性与有效性。
4) adaptive extended Kalman filter
自适应扩展卡尔曼滤波
1.
Attitude calculation techniques,initial alignment methods and A real-time adaptive extended Kalman filter used for improve the system precision were discussed.
文中论述了系统的硬件、软件设计;模块的组成、功能,详细说明了姿态角的计算、初始对准以及采用的稳定、实时、变增益自适应扩展卡尔曼滤波估计算法。
2.
The adaptive extended Kalman filter and unscented Kalman filter(UKF) were designed for fine alignment.
首先利用电子罗盘辅助加速度计完成粗对准,然后,分别设计了自适应扩展卡尔曼滤波器和平淡卡尔曼滤波器(UKF)用于精对准。
5) MGEKF
修正增益卡尔曼滤波
6) MEKF
修正扩展卡尔曼滤波
1.
Modified extend Kalman filter(MEKF) is simple yet very effective in accounting for the measurement of non-linearity.
针对基于扩展卡尔曼滤波的融合算法存在滤波精度不高的问题,将修正扩展卡尔曼滤波算法与集中式序贯融合算法相结合,用于毫米波雷达和红外传感器目标融合跟踪。
2.
Since the traditional Kalman Filter fusion has relative low filtering accuracy,Modified Extended Kalman Filter(MEKF) was used for fusion of measurements of radars for estimating the target state.
传统扩展卡尔曼滤波融合算法滤波精度不高,因此先利用雷达传感器的量测,采用修正扩展卡尔曼滤波算法对目标状态进行估计,再把估计值作为红外传感器的预测值进行序贯融合。
补充资料:自适应卡尔曼滤波
分子式:
CAS号:
性质:在利用测量数据进行滤波的同时,不断地由滤波本身去判断系统的动态是否有变化,对模型参数和噪声统计特性进行估计和修正,以改进滤波设计,缩小滤波的实际误差。此种滤波方法将系统辨识与滤波估计有机地结合为一体。
CAS号:
性质:在利用测量数据进行滤波的同时,不断地由滤波本身去判断系统的动态是否有变化,对模型参数和噪声统计特性进行估计和修正,以改进滤波设计,缩小滤波的实际误差。此种滤波方法将系统辨识与滤波估计有机地结合为一体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条