1) error bound
误差界
1.
The error bound of this method is found under some particular circumstances.
文中给出了某些特殊情形下该类拟合方法的误差
2.
This paper presents a global error bound for the projected gradient by using the value function, which is appeared in sequential quadratic programming (SQP) method.
文章利用序列二次规划(SQP)方法中的价值函数为约束最优化问题的投影梯度提供了一个全局误差界,并利用这个全局误差界给出了可行解点列具有收敛性的充分与必要条件。
3.
In this paper,by using the Fischer function,the vector linear complementarity problem over a convex polyhedron(VLCP) is equivalently reformulated as a system of nonlinear equations,and we give error bound for VLCP under relatively weaker conditions.
借助Fischer函数将凸多面体上的垂直线性互补问题(VLCP)等价地转化为一个非线性方程组系统,在较弱条件下,给出了VLCP的误差界;同时,给出了一种求解VLCP的Levenberg-Marquardt方法,并在不要求存在非退化解的条件下证明了这种方法的全局收敛性和二次收敛性。
2) error bounds
误差界
1.
Global resolvent-type error bounds for generalized quasi variational inclusions;
集值拟变分包含的全局预解类误差界
2.
In addition,a sufficient condition for the strong well-posedness is given in trems of the existence of the so-called local error bounds of the constraints of the optimization problem.
并给出了最优化问题是强适定性的一个充分性条件是适定性的最优化问题的约束更具有局部误差界。
3.
Topics cover first-order optimality conditions, differentiability properties of sup-type functions, global saddle points, error bounds, and weak sharp minima.
本文运用变分分析的工具和方法对上述问题展开研究,包括一阶最优性条件、极大值函数的微分性质、全局鞍点存在性定理、误差界、解集的弱强极小性质等。
3) error bound
误差界限
1.
And the error is analyzed for the simplified Markov model and the error bound is presented with the minimum information of the neglected states.
通过对系统建立的简化模型进行误差分析 ,在已知被忽略状态的最少信息的前提下得到简化模型的误差界限 。
2.
And the error bound of the simplified Markov model is mainly discussed.
并且对该简化方法的误差界限进行了讨论。
4) H ∞ error bounds
H~∞误差界
6) upper error bound
误差上界
1.
The problem of estimating both the \$l\-1\$ upper error bound for robust identification and upper error bound for H\-∞ interpolation algorithms is formulated into the optimization of piece-wise linear functions subjected to linear constrains.
对有限参数线性系统辨识问题的l1误差上界估计和时域H∞ 插值算法误差上界估计等问题转化为一类分片线性函数的最优化问题 ,提出基于分片的混合遗传算法 。
补充资料:误差界限
分子式:
CAS号:
性质:在一定置信度下的误差限。
CAS号:
性质:在一定置信度下的误差限。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条