1) optimized AES
AES算法的优化
1.
Furthermore, the topic about optimized AES is proposed to satisfy the encryption demand of real-time, field and transparency, such as audio and video data flow in the field of information security.
本文简要阐述了AES算法,并为适应信息安全领域中音视频高速数据流所需的实时、现场和透明加密的要求,探讨了AES算法的优化问题。
3) AES algorithm
AES算法
1.
A low power-cost FPGA-based implementation of AES algorithm;
一种基于FPGA的AES算法的低功耗实现
2.
Based on DSP and USB technology and combining with AES algorithm,the lock is designed.
主要基于DSP和USB硬加密技术,并通过结合AES算法有效实现了对软件的保护。
3.
In this paper it describes the flow of encryption and decryption of AES algorithm,analyzes the inner process of each round operation,and achieves the high-speed implementation of AES using combination and simplification for round operation process.
本文主要介绍了高级加密标准AES算法的加密解密流程,分析了每次轮操作的内部过程,对轮操作内部的执行进行合并和简化,从而高速实现了AES算法。
4) AES
AES算法
1.
Cache Hit Side Channel Attack Based on AES;
基于AES算法的Cache Hit旁路攻击
2.
Application of AES on Identification System;
AES算法在身份识别中的应用
3.
Improved Cryptanalysis of AES;
AES算法攻击方法的改进
6) AES
AES加密算法
1.
This article introduces entire implementing process of AES encryption standar d as a whole, and expatiates several steps of AES encryption algorithm in detai l.
文章从总体上介绍了AES加密标准实现的全过程,对AES加密算法的几个步骤进行了详细阐述 ,最后,对AES加密标准算法的安全性给出了一定的分析和评价。
补充资料:计算算法的最优化
计算算法的最优化
ptimization of computational algorifans
计算算法的最优化【。洲咧匕6阅ofc咖例。柱.目习子时-d,”6;onT一Mo3a双,Ra,一eju.Teju.II.叱a几r0P盆n陇o,1 在求解应用问题或精心设计标准程序系统时最优计算算法(comPutatio几al algorithm)的选择.当解决一个具体间题时,最优策略可能不会使解法最优化,可是为优化一个标准程序或应用最简单的解法编制程序则是很直截了当的. 计算算法的最优化问题的理论提法是基于下述原则.当选择一种方法来求解一个问题时,研究人员关心的是某些特性,而且根据这些特性来选择算法,同时这个算法也能用来解决具有这些特性的其他问题.据此,在算法的理论研究中,人们引人了具有特殊性质的一类问题尸.当选择一种解法时,研究人员有一组解法M可供选用.当选用一种方法m来求解一个问题p时,得到的解会有一定的误差e(p,m).称量 E(P,m)=sllp}。(p,m)I P‘P为在这类问题P中方法m的误差(en刀r of the nrth-od),同时,称量 E(p,M)一惑E(p,m)为M中方法在尸中误差的最优估计(。Ptimal estirnateof the error).如果存在一种方法,使得 E(P,m。)=E(P,M),那么称这个方法为最优的(optirnal).研究计算算法最优化问题的一个方案可以追溯到A .H .KQJLMoropoB(【2」),所考虑的是计算积分 1 ‘(f)一Jf(x)dx 0问题的集合,给定的条件是}f(时}成A,其中M是所有可能求积 N ‘(f)澎,万:C,f(x,)的集合·每一种求积由总数为ZN的cj和礼确定.由具有所需精度的某函数类重新生成一个函数所需要的最小信息量(见【2],「31)也可以包含在这个方案中.这个问题的一个更详细的阐述可查阅【4],它指出在特定意义下实现算法的工作量与应用的存储量同样大.最优算法仅对极少数类型问题存在(汇1」),然而,对大量计算问题,已经建立了就其渐近特性而言几乎是最优的方法(见汇5]一【8」). 对某类问题最优的计算算法特性的研究工作(见15],【71)包含两部分:建立其特性尽可能好的具体解法,和根据计算算法的特性得出估计量(见【2]一【4],【9】).实质上,问题的第一部分是数值方法理论的一个基本问题,而且在大多数情况下它是与最优化问题无关的研究工作.下面得到的估计通常归结为对£摘(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条