1) frequency-wave-number solution
频率波数解析
2) spectrum analysis of frequency-wavenumber
频率-波数谱分析
3) Frequency-wavenumber analysis
频率波数分析
4) wave number-frequency domain analysis
波数-频率域分析
6) frequency-wavenumber domain
频率波数域
补充资料:解析函数的残数
解析函数的残数
residue of an analytic Junction
对数残数的多维推广(【4],〔8],【91)使得区域DCCGCC”中的全纯函数系f=(f:,…,f。)的公共零点个数(计及重数)可通过积分 入了“n、一业一卫卫f~we工一、 (2 7ri)”。七{fl‘”‘、答只“f,八砚八“升八、、[v]、一八砚产“斤 、二,,。、1 fdf:人、df。 N(f,D)~万又二不二卜弓止八…八舟毕 (2石)”尹f,‘’‘.fn来表达,其中下是刁D\Ur一、{儿(:)一叫中的某个闭链.已发现多元函数的残数在研究Feynn习n积分、组合分析(「111)和隐函数理论(【81)中有用.【补注】亦见残留形式(residlle form)的补注和参考文献.解析函数的残数【residue of ana回y比云.‘柱叨;.目,eT叨a刀一T.,ee劝益中”二颐“.],亦称留数 单复变量解析函数(analytic细Iction)在其单值特征有限孤立奇点(sin母har point)a处的残数或留数(resjd此)是函数.f(z)在“的一个邻域内Lau『ent展开式(见Laur即t级数(Laurent series))中(z一“)一’的系数。_】,或与之相等的积分 一卫一f厂‘:、d:. 石7r‘于其中下是以a为圆心、半径充分小的圆.此残数记作res If(z);a]. 残数理论(theory ofres沮ues)的基础是C毗勿积分定理(C拟坤吐egralthe。~),而残数定理(res记工祀此on沈n)在这一理论中起着基本作用.设f(:)是单连通域G内除孤立奇点外处处单值解析函数(an砂州cfu沉血n),则f(:)沿位于G内且不经过f(:)的奇点的任一简单闭可求长曲线下的积分可由公式 )了(“’泛“一““‘*荟1‘es tf(“’;“*’计算、其中a*(k=工,…,N)是.厂(:)的位于7内的奇点. 对干在无穷远点“二的的一个邻域内单值解析的八:),函数在无穷远点处的残数(residue of a func-tion吐thePo派at infinjty)由公式 res丁z丫:);二1一早,f、(:)、:一。 LJ一,,J勺,矛JJ、一,一~一! 乙兀‘节定义,其中下一是半径充分大的顺时针向圆周,而c_,是.f(:)在无穷远点邻域内Laurent展开式中:一’的系数.残数定理蕴涵残数总和定理(theon习n on theto-tal sum ofresidues):如果厂(:)是扩充复平面上除有限个奇点外的单值解析函数,则f(:)的残数(包括无穷远点处的残数)之和为零. 由此,计算解析函数沿闭曲线的积分(围道积分)化简为计算残数,而后者在有限极点的情形特别简单.设“笋的是函数f(:)的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条