1) Apostol-Bernoulli numbers
Apostol-Bernoulli数
2) Apostol-Bernoulli polynomials
Apostol-Bernoulli多项式
1.
Apostol-Bernoulli polynomials and Hurwitz Zeta function;
Apostol-Bernoulli多项式和Hurwitz Zeta函数
2.
In the present paper,we obtain a new formulas of the Apostol-Bernoulli polynomials,which denote using the Gaussian hypergeometric functions,and give certain special cases and applications.
我们得到Apostol-Bernoulli多项式的一个用Gauss超几何函数表示的新公式,并给出了它的一些特殊情况和应用。
3) higher order Apostol-Bernoulli polynomials
高阶Apostol-Bernoulli多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
2.
By using the method of generating function and the technique of calculating,several identity involving higher order Apostol-Bernoulli polynomials and stirling numbers are established,and computational formulas of higher order Apostol-Bernoulli polynomials and high order Apostol-Bernoulli numbers are given.
使用发生函数方法和计算技巧,建立起高阶Apostol-Bernoulli多项式与第1类Stirling数之间的恒等式,得到关于高阶Apostol-Bernoulli多项式、高阶Apostol-Bernoulli数等的计算公式。
4) the generalized Apostol-Bernoulli polynomials
广义Apostol-Bernoulli多项式
1.
In the second chapter,we give several symmetric identities on the generalized Apostol-Bernoulli polynomials by applying the generating functions.
第二章,应用生成函数,得到若干关于广义Apostol-Bernoulli多项式的对称恒等式,这些结果推广了一些已知的恒等式。
5) Apostol-Euler numbers
Apostol-Euler数
6) Bernoulli Number
Bernoulli数
1.
On A Group of Congruence of Bernoulli Number and Euler Number;
关于Bernoulli数与Euler数的一组同余式
2.
A recurrence formula of the coefficient of the sum of natural numbers power and the calculating formula of Bernoulli Number;
自然数幂和公式系数的递推公式和有关Bernoulli数的计算公式
3.
An identical formula describing the relationship betweenBernoulli number and Stirlings number of the second kind;
联系Bernoulli数和第二类Stirling数的一个恒等式
补充资料:数不胜数
1.数也数不清。形容很多。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条