说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 迭代应变能量释放法
1)  iterative strain energy relaxation method
迭代应变能量释放法
2)  strain energy release
应变能释放
1.
The mechanism of minig tremor in Puqing Iron Mine of Daye is investigated by means of 3D FEM numerical analysis,RMR rock classification,and examination of sudden strain energy release caused by mining explosion operations.
以湖北省大冶市灵乡普庆铁矿矿震灾害为例,通过三维有限元数值分析和RMR岩体分类评分以及采场爆破诱发应变能释放成因分析,研究了矿震发生的机理,并利用RMR-σθ/cσ岩体破坏类型分类方法分析了矿震发生所具备的必要条件。
3)  energy iterative method
能量迭代法
1.
An improved energy iterative method used to solve strong nonlinear system including time varying damping and stiffness coefficient is developed.
对一类阻尼和刚度系数均含有时变参数的强非线性系统进行了研究,针对时变阻尼项和刚度项之间的耦合作用使周期解的平均值发生漂移问题,为能够在任意参数平面范围内求出该系统的周期解,提出了一种改进的能量迭代法,给出了用改进的能量迭代法求此类强非线性系统主振动解及谐振解的过程与结果,推导出了系统主振动的幅频和相频响应方程。
4)  Strain energy release rate
应变能释放率
1.
Analysis of strain energy release rate based on virtual crack closure technique
基于虚拟裂纹闭合技术的应变能释放率分析
2.
And then,substituting stress and displacement into basic formula of strain energy release rate,computing formula for strain energy release rate of mode III, mixed mode crack tips are direved.
其次将应力与位移代入应变能释放率的基本公式,推出了Ⅰ、Ⅱ混合型,Ⅲ型以及Ⅰ、Ⅱ、Ⅲ混合型裂纹尖端应变能释放率的具体计算公式。
3.
The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined.
通过应用Fourier分析和对偶积分方程理论 ,得到了立方准晶材料Ⅲ型裂纹问题的精确解析解 ,并由此确定了位移与应力场 ,应力强度因子和应变能释放率 。
5)  general stress release
广义应变能释放
6)  strain energy release rate
应变能释放速率
补充资料:能量原理与能量法


能量原理与能量法
energy principles and energy methods

  nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条