1) nonhomogeneous linear differential equation
非齐线性微分方程
1.
Method of substitution of constants is an important method for solving nonhomogeneous linear differential equations.
常数变易法是求解非齐线性微分方程(组)的一种重要方法。
2) Nonhomogeneous linear ordinary differential equation
非齐线性常微分方程
1.
The paper introduces basic sets of solutions for nonhomogeneous linear ordinary differential equations and proves that the general solutions of such equations consist of all convex linear combinations of any basic set of solutions.
引进了非齐线性常微分方程的基本解组,证明了非齐线性常微分方程的通解由其基本解组的所有凸线性组合构成,由此给出了非齐线性常微分方程通解的又一表达形式。
3) non homogeneous and linear differential equations
非齐次线性微分方程组
1.
A method to solve non homogeneous and linear differential equations by homogenization high precision direct integration (HHPD P) was proposed.
根据函数分段插值逼近的思想 ,在一个积分步长内用多项式近似表示方程的非齐次项 ,提出了一种原理简单、实施容易的求解非齐次线性微分方程组的新型齐次扩容精细积分法 ,该方法不涉及矩阵的求逆运算 ,不需要计算傅里叶级数展开系数的振荡函数积分 ,且在一个积分步长内只求解一个相应的齐次扩容微分方程组 ,因而本方法和已有的同类方法相比具有更高的计算精度和效率 ,数值算例表明了该方法的有效
4) linear non-homogeneous differential equation
线性非齐次微分方程
1.
In this paper,the authors investigate the growth of infinite order solutions of linear non-homogeneous differential equations f ″+Af ′+Bf=F,where,A,B are entire functions,F is an entire function of finite order.
研究了线性非齐次微分方程f″ +Af′+Bf=F的无穷级解的增长性 。
5) nonlinear differential equation set
非齐线性微分方程组
1.
The simplifed solution to one kind of nonlinear differential equation set,and the expression to special solution are given.
给出一类非齐线性微分方程组特解的简捷求法 ,并提供了特解的表达式。
6) non-homogeneous linear differential equation
非齐次线性微分方程
1.
This paper introduces some methods for solving constant coefficient non-homogeneous linear differential equation by means of examples .
给出了常系数非齐次线性微分方程的几个解法,并举例说明了它们的应用。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条