1) missing tracking data
跟踪数据缺失
1.
In the situation of missing tracking data in the initial time interval for some tests,the inverse derivation method to estimate overall tracking trajectory by using modified telemetry data after deducting the guidance instrumentation systematic error was studied.
针对试验中出现的初始段跟踪数据缺失情形,研究利用修正制导工具误差后的遥测数据转至发射系下弥补外测跟踪数据的逆向递推方法,给出了实际实现方案。
2) data track
数据跟踪
1.
Level 2 process automation system is applied to achieve data checking,data track and data setting of slab.
炉区一级基础自动化系统由仪表控制和电气控制两套系统组成,分别用作加热炉的燃烧控制和电气设备控制;炉区二级过程自动化系统实现了坯料数据核对、数据跟踪处理、数据设定等功能。
3) missing data
缺失数据
1.
Multiple imputation for analyzing 2×2 cross over design with missing data;
多重填补处理有缺失数据的2×2交叉设计资料的计算机模拟
2.
EM estimation for missing data in medical research;
医学科研中缺失数据的EM估计
3.
Asymptotic behavior of semiparametric regression model under missing data;
缺失数据下半参数回归模型的渐近性质
4) data missing
数据缺失
1.
Firstly,based on correlation analysis,five reference points which were most correlative with the data missing points were obtained,then the data of both reference points and data missing point in the stage were simulated and verified.
首先基于相关性分析,选择与数据缺失监测点应变值相关性最强的5个监测点作为参考点;然后利用未缺失时间段内待恢复监测点和参考点的应变数据进行建模和检验,一半数据用来建立BP神经网络模型,一半数据用来进行模型的检验;最后利用建立的模型对缺失的数据进行恢复,得到了完整的应变监测数据。
5) missing data
数据缺失
1.
We get the estimation of parameters of three-parameter lognormal distribution ba sed on missing data.
本文给出数据缺失场合三参数对数正态分布的参数估计,并通过Monte-Carlo模拟说明了本文方法的可行性。
2.
In particular,with the non-ignorable missing data,how to fill the data to improve the estimation precision.
抽样调查中经常会出现数据缺失现象,尤其是当数据为不可忽略的缺失时,如何对数据进行填充才能使得估计有效便成为需要关注的问题。
3.
Analysis and comparison of methods dealing with missing data of incomplete information system;
文章主要分析和比较在数据缺失或信息不完备的情况下空缺数据的处理方法。
6) coil data tracking
钢卷数据跟踪
1.
This article expatiates upon the coil data tracking of the continuous Pickling Line after the adoption of the Pickling-Rolling Combination Line,including the choice of the HMI-INTOUCH software,the fulfillment of the data tracking in the AB-zone of the production line,the significance of the application of animation as well as the successful application of the HMI on the machine unit.
阐述了在酸轧联机后连续酸洗生产线的钢卷数据跟踪的设计,分别从HMI-INTOUCH软件的选用、生产线AB区数据跟踪的实现、动画实现的意义及HMI在机组上的成功应用逐一介绍。
补充资料:跟踪和数据中继卫星
转发地球站对中、低轨道航天器的跟踪、遥控信息和转发航天器发回地面的数据的通信卫星(图1 )。高频段电波的直线传播特性和地球曲率的影响,使测控站跟踪中、低轨道航天器的轨道弧段和通信时间受到限制,跟踪和数据中继卫星相当于把地面上的测控站升高到了地球静止卫星轨道高度,一颗卫星就能观测到大部分在近地空域内飞行的航天器,两颗卫星组网就能基本上覆盖整个中、低轨道的空域。因此由两颗卫星和一个测控站所组成的跟踪和数据中继卫星系统,可以取代配置在世界各地由许多测控站构成的航天测控网。跟踪和数据中继卫星的主要用途是:
① 跟踪、测定中、低轨道卫星:为了尽可能多地覆盖地球表面和获得较高的地面分辨能力,许多卫星都采用倾角大、高度低的轨道。跟踪和数据中继卫星几乎能对中、低轨道卫星进行连续跟踪,通过转发它们与测控站之间的测距和多普勒频移信息实现对这些卫星轨道的精确测定。
② 为对地观测卫星实时转发遥感、遥测数据:气象、海洋、测地和资源等对地观测卫星在飞经未设地球站的上空时,把遥感、遥测信息暂时存贮在记录器里,而在飞经地球站时再转发。这种跟踪和数据中继卫星能实时地把大量的遥感和遥测数据转发回地面。
③ 承担航天飞机和载人飞船的通信和数据传输中继业务:地面上的航天测控网(见航天测控和数据采集网)平均仅能覆盖15%的近地轨道,航天员与地面上的航天控制中心直接通话和实时传输数据的时间有限。两颗适当配置的跟踪和数据中继卫星能使航天飞机和载人飞船在全部飞行的85%时间内保持与地面联系。
④ 满足军事特殊需要:以往各类军用的通信、导航、气象、侦察、监视和预警等卫星的地面航天控制中心,常须通过一系列地球站和民用通信网进行跟踪、测控和数据传输。跟踪和数据中继卫星可以摆脱对绝大多数地球站的依赖,而自成一独立的专用系统,更有效地为军事服务。
1983年4月,美国从"挑战者"号航天飞机上发射了第一颗跟踪和数据中继卫星(TDRS)(图2 ),它是现代最大的通信卫星,也是首次在一颗卫星上同时采用S、C和 Ku3个频段的通信卫星。卫星重2吨多,太阳电池翼伸开后,翼展达17.4米,横向跨度为13米。卫星工作10年后,太阳电池阵仍可提供1850瓦功率。星体采用三轴姿态控制稳定方式(见航天器姿态控制)。卫星上装有 7副不同类型的天线。两副直径 4.9米抛物面天线在卫星发射过程中收拢成筒状,入轨后通过机械螺杆控制撑开呈伞形,每个天线有两副馈源,分别用于S和Ku频段的跟踪和数据中继。一副直径为 2米的抛物面天线用于对卫星通信地球站的Ku频段双向通信。这3副天线均装在精密的万向架上,由地面指令控制,能自动跟踪其他航天器,指向精度达0.06°。星体中部是30个螺旋组成的 S频段相控阵天线,用作多址通信。还有一副直径1.12米的Ku频段抛物面天线和一副C频段铲形天线,用于美国国内通信。Ku、S频段转发器能提供的通信容量有20个S频段多址信道,2个S频段单址信道和2个Ku频段单址信道。此外,12个C频段转发器可传输电话、电视和数据等。
① 跟踪、测定中、低轨道卫星:为了尽可能多地覆盖地球表面和获得较高的地面分辨能力,许多卫星都采用倾角大、高度低的轨道。跟踪和数据中继卫星几乎能对中、低轨道卫星进行连续跟踪,通过转发它们与测控站之间的测距和多普勒频移信息实现对这些卫星轨道的精确测定。
② 为对地观测卫星实时转发遥感、遥测数据:气象、海洋、测地和资源等对地观测卫星在飞经未设地球站的上空时,把遥感、遥测信息暂时存贮在记录器里,而在飞经地球站时再转发。这种跟踪和数据中继卫星能实时地把大量的遥感和遥测数据转发回地面。
③ 承担航天飞机和载人飞船的通信和数据传输中继业务:地面上的航天测控网(见航天测控和数据采集网)平均仅能覆盖15%的近地轨道,航天员与地面上的航天控制中心直接通话和实时传输数据的时间有限。两颗适当配置的跟踪和数据中继卫星能使航天飞机和载人飞船在全部飞行的85%时间内保持与地面联系。
④ 满足军事特殊需要:以往各类军用的通信、导航、气象、侦察、监视和预警等卫星的地面航天控制中心,常须通过一系列地球站和民用通信网进行跟踪、测控和数据传输。跟踪和数据中继卫星可以摆脱对绝大多数地球站的依赖,而自成一独立的专用系统,更有效地为军事服务。
1983年4月,美国从"挑战者"号航天飞机上发射了第一颗跟踪和数据中继卫星(TDRS)(图2 ),它是现代最大的通信卫星,也是首次在一颗卫星上同时采用S、C和 Ku3个频段的通信卫星。卫星重2吨多,太阳电池翼伸开后,翼展达17.4米,横向跨度为13米。卫星工作10年后,太阳电池阵仍可提供1850瓦功率。星体采用三轴姿态控制稳定方式(见航天器姿态控制)。卫星上装有 7副不同类型的天线。两副直径 4.9米抛物面天线在卫星发射过程中收拢成筒状,入轨后通过机械螺杆控制撑开呈伞形,每个天线有两副馈源,分别用于S和Ku频段的跟踪和数据中继。一副直径为 2米的抛物面天线用于对卫星通信地球站的Ku频段双向通信。这3副天线均装在精密的万向架上,由地面指令控制,能自动跟踪其他航天器,指向精度达0.06°。星体中部是30个螺旋组成的 S频段相控阵天线,用作多址通信。还有一副直径1.12米的Ku频段抛物面天线和一副C频段铲形天线,用于美国国内通信。Ku、S频段转发器能提供的通信容量有20个S频段多址信道,2个S频段单址信道和2个Ku频段单址信道。此外,12个C频段转发器可传输电话、电视和数据等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条