1) feedforward process neural networks
前馈过程神经网络
1.
A transformation method from feedforward process neural networks to feedforward neural networks is proposed.
采用前馈过程神经网络方法预测发动机排气温度,讨论了网络输入输出参数的选择问题,基于正交基函数简化了前馈过程神经网络的聚合运算,提出了从前馈过程神经网络向传统前馈神经网络网络模型的转化方法,基于传统前馈神经网络先验知识给出了学习算法,进行了网络训练及仿真,取得了满意的结果。
2) Feedback process neural network
反馈过程神经网络
1.
Feedback process neural network with time-varying input and output functions and its applications;
具有时变输入输出函数的反馈过程神经网络及应用
3) feedback process neural networks
反馈过程神经元网络
1.
To solve the classification of dynamic signal,this paper proposed a feedback process neural networks model and classification methods based on this model.
针对动态信号模式分类问题,提出了一种反馈过程神经元网络模型和基于该模型的分类方法。
4) Feedforward Neural Network
前馈神经网络
1.
Multi-layer feedforward neural network based on binary ant colony algorithms;
基于二元蚁群算法的多层前馈神经网络
2.
Chaos BP hybrid learning algorithm for feedforward neural network;
前馈神经网络的混沌BP混合学习算法
3.
A new feedforward neural network pruning algorithm;
一种新的前馈神经网络删剪算法
5) feedforward neural networks
前馈神经网络
1.
Newton-gradient coupling algorithm for feedforward neural networks;
前馈神经网络的梯度-牛顿耦合学习算法
2.
Computing Lyapunov exponents with feedforward neural networks;
利用前馈神经网络计算Lyapunov指数
3.
,this paper proposes a new algorithm which combined the advantages of the momentum feedforward neural networks and the traditional CMA blind equalization algorithms,which adjusts the new weight value with the adjusting value used before so that the algorithm could be less sensitive to the stationary point of the error surface.
针对基于前馈神经网络的盲均衡算法中,BP优化算法具有收敛速度慢、易陷入局部极小的缺点,提出了一种新的盲均衡算法,该算法结合动量项前馈神经网络与传统恒模盲均衡算法的优点,将以前权值的调节量用于当前权值的修改过程,降低了算法对于误差曲面局部极值点的敏感性。
6) feed-forward neural networks
前馈神经网络
1.
Application of feed-forward neural networks to dam deformation monitoring based on differential evolution algorithm;
基于差异进化算法的前馈神经网络在大坝变形监测中的应用
2.
Applied to the problem of optimizing the connection weights of the feed-forward neural networks,the algorithm was feasible.
并将该算法用来优化前馈神经网络的连接权值。
3.
On the basis of both adaptive BP algorithm and Newton s method, Quasi Newton algorithm with adaptive decoupled step and momentum (QNADSM) for feed-forward neural networks is derived.
基于输出层函数为线性函数的三层前馈神经网络,结合自适应步长和动量解耦的伪牛顿算法及 迭代最小二乘法导出了一种混合算法。
补充资料:Hopfield神经网络模型
Hopfield神经网络模型
Hopfield neural network model
收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条