1) reference evapotranspiration
参考腾发量
1.
Using radial basis function network based on project pursuit to forecast reference evapotranspiration;
基于投影寻踪的径向基函数网络在参考腾发量预测中的应用
2) reference crop evapotranspiration
参考作物腾发量
1.
A Fourier series model for forecasting reference crop evapotranspiration;
参考作物腾发量预报的傅立叶级数模型
2.
Dynamic variation characteristics and tendency of reference crop evapotranspiration in the longitudinal range gorge region;
纵向岭谷区参考作物腾发量变化的特点和趋势
3.
Long-term correlation and multi-fractality of reference crop evapotranspiration time series;
参考作物腾发量时间序列的长程相关性和多重分形分布
3) evapotranspiration
[英][i,væpəu,trænspi'reiʃən] [美][ɪ,væpo,trænspə'reʃən]
参考作物腾发量
1.
Multi-time-scale analysis of evapotranspiration based on wavelet transform
参考作物腾发量多时间尺度分析的小波变换
2.
Our research is an attempt to estimate monthly evapotranspiration in the Taizi River basin from1960 to 2005 by using the Hargreaves equation and Penman-Montieth equation.
应用Hargreaves公式和Penman-Montieth公式计算了太子河流域1960-2005年间逐月参考作物腾发量。
4) reference evapotranspiration
参考作物腾发量
1.
Analysis of the change characteristics and effect factors of reference evapotranspiration in Taizi river basin;
太子河流域参考作物腾发量演变特征及气候影响因素分析
2.
Temporal and spatial characteristics of reference evapotranspiration in China;
中国参考作物腾发量时空变化特性分析
3.
Stochastic characters of reference evapotranspiration and precipitation of Xiaohe Irrigation Areas,Shanxi Province;
山西潇河灌区参考作物腾发量和降水的随机特性
5) reference evaportranspiration
参考作物腾发量
1.
Predicting reference evaportranspiration based on artificial neural network with genic arithmetic;
基于进化神经网络的参考作物腾发量预测
2.
To discuss the feasibility of utilizing the radial basis function artificial neural network (RBF ANN) model and to predict daily reference evaportranspiration,five different kinds of model inputting factors’composition are made and their correlative influences on the model’s forecasting precision are studied.
探讨了采用径向基函数网络模型进行参考作物腾发量预测方法的可行性,设计多组数字实验处理研究了输入因子间相关性对网络模型预测准确性的影响,预测结果与Penman-Montieth方法计算结果比较表明,所确定的模型与改进的Penman公式计算值有很高的一致性,具有一定精度。
3.
The Elman neural network,which is a dynamic neural network,is used in reference evaportranspiration prediction.
参考作物腾发量是估算作物蒸发蒸腾量的关键参数,它的准确预测对提高作物需水预报精度具有十分重要的意义。
6) ET_0
参考作物腾发蒸腾量
1.
Drawing of Reference Crop Evaportranspiration ET_0 Isoline Map;
参考作物腾发蒸腾量等值线图的绘制
补充资料:腾发量
分子式:
CAS号:
性质:又称腾发量或总蒸发量。农田土壤蒸发和植物蒸腾的总耗水量。蒸散量是农田水分平衡的重要组成部分,一般受下述因素影响:大气干燥程度,辐射条件及风力大小,土壤湿润程度和导水能力,植被状况(包括植物群体结构、植物水分输导组织、叶片气孔数量、大小等)。
CAS号:
性质:又称腾发量或总蒸发量。农田土壤蒸发和植物蒸腾的总耗水量。蒸散量是农田水分平衡的重要组成部分,一般受下述因素影响:大气干燥程度,辐射条件及风力大小,土壤湿润程度和导水能力,植被状况(包括植物群体结构、植物水分输导组织、叶片气孔数量、大小等)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条