说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 标定方程
1)  calibration equation
标定方程
1.
Considering the variation of application of the loads and the influence of the landing gear compression stroke,an influence factor of landing gear compression stroke was defined and introduced in the calibration equation as a parameter.
根据航向载荷作用点的不同并考虑压缩行程的影响,提出了压缩行程影响因子,并把其引入标定方程,同时运用多元回归及优化方法建立标定载荷方程,由此得出实测载荷谱,为起落架的定寿延寿及可靠性设计提供了重要依据。
2)  Calibration equation
定标方程
1.
And its calibration method is analyzed and calibration equation is established.
在理论分析方面,讨论了W波段K因子型全功率辐射计的工作原理,分析了辐射计系统的定标方法,建立了定标方程,给出了辐射计的绝对准确度、线性度、灵敏度和积分时间的理论测试方法。
2.
Carries on the calibration equation using the transmission near-infrared meter FOSS1241 scanning spectrum the establishment.
利用透射型近红外仪FOSS1241扫描光谱进行定标方程的建立。
3)  Kruppa equation self-calibration
Kruppa方程自标定
4)  scaling equation
标度方程
1.
The scaling equation for normal pressure n -alkane/asphaltene system is extended to high-pressure gas-injected oil systems and then tested by comparison with the present experimental data and those available in the literature.
标度方程[3] 不涉及此物性数据 ,且待定参数少 ,预测性较高 ,但迄今仍限于常压正构烷烃 /原油体系 。
2.
The applicability of scaling equation for predicting onset of asphaltene precipitation has been studied and further extended to high-pressure gas injected system and precipitant/solvent/oil system.
研究了用标度方程预测沥青质沉淀点的可行性,并将其推广应用至高压注气体系和沉淀剂/溶剂/原油体系。
5)  calibration equation
标准方程
1.
In this study,the HPLC multiwavelength data of tamoxifen was processed by using partial least squares regression method,and the calibration equation was aquired.
使用偏最小二回归校正法处理他莫昔芬高效液相定量分析数据得到他莫昔芬的多波长标准方程,并将其与传统的单波长标准方程进行比较。
6)  Standard equation
标准方程
1.
The mistakes appeared on the interrelated articles are amened, because the relevant general formula of image on rotational hyperboloid in paraxial region is produced, using the standard equation of the rotational hyperboloid.
利用旋转双曲面的标准方程,正确导出了近轴成像的一般公式,并对以往相关文献中的不当之处进行了纠正。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条