1) synchronous demodulation
同步解调
1.
The paper studied the principle of the all-angle MUM(Mass-Unbalanced Modulation) reading realized through synchronous demodulation,discussed the factors that influenced the reading precision,and analyzed the reading errors resulted from the non-orthogonality of the electrodes-fixed frame and the inconsistent between the scale factors of different measuring channels.
研究了采用同步解调法实现静电陀螺仪质量不平衡调制(MUM)全姿态读取的原理,讨论了影响读取精度的因素,分析了各电极轴转子位移测量电路比例因子不一致和电极轴不正交造成的读取误差。
2.
MFSK signal can be demodulated by synchronous demodulation and envelope demodulation.
MFSK信号可用同步解调和包络解调两种方式进行,采用不同解调方式的MFSK通信系统具有不同的性能特点,重点讨论采用同步解调的MFSK通信系统的抗噪声性能。
3.
In synchronous demodulation, frequency and phase of a local carrier must be synchronous with sending station, distortion will be caused in output signals of demodulation as frequency error and phase error occur in the local carrier.
在同步解调中,本地载波的频率和相位必须与发送端载波同步,当本地载波存在频率或相位误差时,会使解调输出信号产生失真。
2) synchronous demodulator
同步解调器
3) synchronous modem
同步调制解调器
4) synchronous phase sensitive demodulation
同步相敏解调
1.
The feasibility of square wave driving were demonstrated,adding phase shift element in self-excited driving circuit was presented,to make the Micro Quartz Tuning Fork Gyroscope s driving oscillation frequency equal to it s mechanical resonant frequency,the switch synchronous phase sensitive demodulation s application in det.
在分析微石英音叉陀螺的工作原理及电学特性的基础上,对微石英音叉陀螺的驱动电路和微弱角速度信号的提取方法进行了研究;论证了方波驱动的可行性,提出了在自激驱动回路中加入移相环节,使微石英音叉陀螺的驱动振动频率等于其机械谐振频率,分析了开关同步相敏解调在角速度信号的提取中的应用及其对噪声的抑制能力;设计并分析了一个用方波驱动微石英音叉陀螺,用开关同步相敏解调完成信号解调的电路,该电路结构简单,工作可靠,性价比高。
5) Synchronous accumulation and demodulation
同步累加解调
6) digital synchronous demodulation
数字同步解调
1.
Based on the digital synchronous demodulation technology,a triangle angle reflection setting is anticipated,and the entire phase-detection in MATLAB is emulated.
基于数字同步解调测相技术,以三角形角反射器为实物预想目标,在MATLAB环境中对整个测相过程进行了仿真。
2.
Phase-shift laser range finder based on digital synchronous demodulationtechnology not only improves phase measurement accuracy, but also highlyincreases measurement speed.
采用数字同步解调测相技术的相位式激光测距系统,不仅具有测距精度高、速率快的优点,同时整个系统结构较传统测距系统大为简化。
3.
A fast phase difference measurement method based on digital synchronous demodulation and analog mixer was proposed and its principle was analyzed in detail.
详细分析了数字同步解调原理,并在此基础上提出了一种新的同步解调原理结合模拟混频的快速测相方法,介绍了该方法在相位法激光测距中的具体实现过程。
补充资料:时间同步与频率同步
时间同步是通过时刻比对将分布在不同地方的钟的时刻值调整到一定的准确度或一定的符合度。前者称为绝对时间同步(也称对时),后者称为相对时间同步。频率同步是通过频率比对将分布在不同地方的频率源的频率值调整到一定的准确度或一定的符合度。前者称为绝对频率同步(也称校频),后者称为相对频率同步。不同的时间频率源在一段时间内的时间同步等效于相应的频率同步,所以一般统称为时间频率同步。
时间频率同步方法 时间频率同步的方法很多,较典型的是利用高频、甚低频、罗兰-C、电视、搬运钟和卫星等发出的标准时间频率信号作为依据进行同步。
接收高频发播的标准时间频率信号进行同步的方法比较简单。但是它依靠天波传播,受电离层高度变化的影响,传播距离会发生变化,所以同步精度只有几毫秒。
接收甚低频发播的标准时间频率信号进行同步的方法依靠地波传播,损耗低,相位稳定,有效作用距离可及全球。如果避开日出、日落时间,采用时间编码体制,则同步精度可达10微秒。
罗兰-C链是美国海军设立的一个低频(100千赫)双曲线导航系统,传播特性稳定,覆盖区域较广(见罗兰导航系统)。国际时间局利用这个系统作为比对世界各国的原子钟数据以求得国际原子时的手段。它的同步精度可达1微秒。
利用电视中的标准时间频率信号进行时间频率同步的精度也较高,而且经济易行,但它只能用于电视网所及之处。它分为无源法和有源法两种。无源法是以电视信号的某一约定的行同步脉冲作为比对用的参考时刻(中国采用行6,美国采用行10),同步精度可达0.5微秒;有源法直接接收彩色电视中的标准时间信号和副载频,时间同步精度可达0.5微秒,频率同步精度可达5×10-12 /30分。
将便携式时间频率标准从一个地方搬运到另一个地方进行时间频率同步,是一种最直接和准确、可靠的方法,时间同步精度达0.1微秒。
卫星时间频率同步 1962年美国和英国利用"电星"通信卫星进行了时间同步试验。随后,很多国家(包括中国)也利用同步卫星进行过多种时间频率同步试验。卫星时间频率同步方法分为单向转发、双向转发、卫星标准和全球定位系统四种。
① 单向转发法:在同步轨道上的卫星接收来自主地球站的标准时间频率信号,并转发给其他地球站用户。这种方法受卫星位置漂移和地球站与卫星之间传播时延误差等影响,同步精度只有几毫秒。
② 双向转发法:进行时间频率同步的两个地球站通过同步卫星转发,同时向对方发射或接收时间频率信号。这样,传播时延误差可以在很大程度上被抵消,同步精度可提高到几十纳秒量级。
③ 卫星标准法:通过接收同步卫星所携带的时间频率标准的信号来进行时间频率同步。这种方法虽然也是单向传播,但卫星同时发出自己的位置信号以供计算传播时延,所以同步精度可达微秒量级。
④ 全球定位系统:美国研制的可覆盖全球的卫星导航系统,包括均匀分布的18颗同步卫星,各卫星带有相同的时间频率标准。各地用户就近接收 3颗卫星上伪噪 声编码的时刻信号、位置信号和供计算修正用的信号,以进行时间频率同步。同步精度可达纳秒量级。
时间频率同步的发展 随着对时间频率同步精度要求的提高,已提出静止轨道激光同步 (LASSO)和航天飞机实验等时间频率同步的新建议。国际时间局和法国建议利用LASSO进行时间频率同步,即利用"意大利工业研究卫星"(Sirio-Ⅱ)同步卫星上的激光反射器,将一个地球站向卫星发射的激光脉冲反射到另一个地球站以进行时间频率同步,预期同步精度将优于1纳秒。美国航空航天局建议利用航天飞机实验进行全球范围内高精度的时间频率同步。航天飞机上装有高精度的原子钟,它通过单向或双向连续波信号和时码调制微波信号同地面上的时间频率标准进行比对。为了校准这一空间系统,在使用微波信号的同时还使用短脉冲激光信号。此外,还采取修正传播时延误差和消除多普勒效应误差等措施,预期同步精度也优于1纳秒。
时间频率同步方法 时间频率同步的方法很多,较典型的是利用高频、甚低频、罗兰-C、电视、搬运钟和卫星等发出的标准时间频率信号作为依据进行同步。
接收高频发播的标准时间频率信号进行同步的方法比较简单。但是它依靠天波传播,受电离层高度变化的影响,传播距离会发生变化,所以同步精度只有几毫秒。
接收甚低频发播的标准时间频率信号进行同步的方法依靠地波传播,损耗低,相位稳定,有效作用距离可及全球。如果避开日出、日落时间,采用时间编码体制,则同步精度可达10微秒。
罗兰-C链是美国海军设立的一个低频(100千赫)双曲线导航系统,传播特性稳定,覆盖区域较广(见罗兰导航系统)。国际时间局利用这个系统作为比对世界各国的原子钟数据以求得国际原子时的手段。它的同步精度可达1微秒。
利用电视中的标准时间频率信号进行时间频率同步的精度也较高,而且经济易行,但它只能用于电视网所及之处。它分为无源法和有源法两种。无源法是以电视信号的某一约定的行同步脉冲作为比对用的参考时刻(中国采用行6,美国采用行10),同步精度可达0.5微秒;有源法直接接收彩色电视中的标准时间信号和副载频,时间同步精度可达0.5微秒,频率同步精度可达5×10-12 /30分。
将便携式时间频率标准从一个地方搬运到另一个地方进行时间频率同步,是一种最直接和准确、可靠的方法,时间同步精度达0.1微秒。
卫星时间频率同步 1962年美国和英国利用"电星"通信卫星进行了时间同步试验。随后,很多国家(包括中国)也利用同步卫星进行过多种时间频率同步试验。卫星时间频率同步方法分为单向转发、双向转发、卫星标准和全球定位系统四种。
① 单向转发法:在同步轨道上的卫星接收来自主地球站的标准时间频率信号,并转发给其他地球站用户。这种方法受卫星位置漂移和地球站与卫星之间传播时延误差等影响,同步精度只有几毫秒。
② 双向转发法:进行时间频率同步的两个地球站通过同步卫星转发,同时向对方发射或接收时间频率信号。这样,传播时延误差可以在很大程度上被抵消,同步精度可提高到几十纳秒量级。
③ 卫星标准法:通过接收同步卫星所携带的时间频率标准的信号来进行时间频率同步。这种方法虽然也是单向传播,但卫星同时发出自己的位置信号以供计算传播时延,所以同步精度可达微秒量级。
④ 全球定位系统:美国研制的可覆盖全球的卫星导航系统,包括均匀分布的18颗同步卫星,各卫星带有相同的时间频率标准。各地用户就近接收 3颗卫星上伪噪 声编码的时刻信号、位置信号和供计算修正用的信号,以进行时间频率同步。同步精度可达纳秒量级。
时间频率同步的发展 随着对时间频率同步精度要求的提高,已提出静止轨道激光同步 (LASSO)和航天飞机实验等时间频率同步的新建议。国际时间局和法国建议利用LASSO进行时间频率同步,即利用"意大利工业研究卫星"(Sirio-Ⅱ)同步卫星上的激光反射器,将一个地球站向卫星发射的激光脉冲反射到另一个地球站以进行时间频率同步,预期同步精度将优于1纳秒。美国航空航天局建议利用航天飞机实验进行全球范围内高精度的时间频率同步。航天飞机上装有高精度的原子钟,它通过单向或双向连续波信号和时码调制微波信号同地面上的时间频率标准进行比对。为了校准这一空间系统,在使用微波信号的同时还使用短脉冲激光信号。此外,还采取修正传播时延误差和消除多普勒效应误差等措施,预期同步精度也优于1纳秒。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条